Advertisement

Chemistry of Heterocyclic Compounds

, Volume 54, Issue 10, pp 946–950 | Cite as

Synthesis of spirocyclic 3Н-pyrrol-4-amines from 2H-azirines and 1-sulfonyl-1,2,3-triazoles

  • Adel R. Khaidarov
  • Nikolai V. Rostovskii
  • Galina L. Starova
  • Alexander F. Khlebnikov
  • Mikhail S. NovikovEmail author
Article
  • 54 Downloads

The first derivatives of 3H-pyrrol-4-amines spiro-fused with fluorene or anthrone were synthesized in a Rh2(OAc)4-catalyzed reaction of 1-sulfonyl-1,2,3-triazoles with 2H-azirines. The reaction proceeds through 1,4-diazahexa-1,3,5-triene intermediates, which under the conditions employed cyclize to stable at room temperature 1,2-dihydropyrazines. At elevated temperatures, 1,2-dihydropyrazines are in ring-chain equilibrium with 1,4-diazahexa-1,3,5-trienes, which undergo irreversible 5-exo-trig cyclization, leading to spirocyclic derivatives of 3H-pyrrol-4-amine.

Keywords

2Н-azirines diazo compounds pyrazines pyrroles spiro compounds 1,2,3-triazoles catalysis 

Notes

This work was supported by the Russian Foundation for Basic Research (projects No. 16-03-00596, 16-33-60130) and Saint Petersburg State University project (No. 12.40.1427.2017).

The analysis of the synthesized compounds was performed using the resource centers of Saint Petersburg State University ''Magnetic Resonance Research Center'', ''Center for X-ray Diffraction Studies'', ''Chemistry Educational Center'', and ''Chemical analysis and Materials Research Center''.

Supplementary material

10593_2018_2378_MOESM1_ESM.pdf (1.2 mb)
ESM 1 (PDF 1270 kb)

References

  1. 1.
    (a) Khlebnikov, A. F.; Novikov, M. S. Tetrahedron 2013, 69, 3363. (b) Huang, C.-Y.; Doyle, A. G. Chem. Rev. 2014, 114, 8153. (c) Khlebnikov, A. F.; Novikov, M. S. In Topics in Heterocyclic Chemistry; D'hooghe, M., Ha, H.-J., Eds.; Springer, 2016, Vol. 41, p. 143. (d) Zhou, H.; Shen, M.-H.; Xu, H.-D. Synlett 2016, 2171. (e) Zhao, M.-N.; Ren, Z.-H.; Yang, D.-S.; Guan, Z.-H. Org. Lett. 2018, 20, 1287.Google Scholar
  2. 2.
    (a) Sakharov, P. A.; Rostovskii, N. V.; Khlebnikov, A. F.; Novikov, M. S. Tetrahedron 2017, 73, 4663. (b) Li, T.; Xu, F.; Li, X.; Wang, C.; Wan, B. Angew. Chem., Int. Ed. 2016, 55, 2861. (c) Rostovskii, N. V.; Sakharov, P. A.; Novikov, M. S.; Khlebnikov, A. F.; Starova, G. L. Org. Lett. 2015, 17, 4148. (d) Jana, S.; Clements, M. D.; Sharp, B. K.; Zheng, N. Org. Lett. 2010, 12, 3736. e Li, X.; Du, Y.; Liang, Z.; Li, X.; Pan, Y.; Zhao, K. Org. Lett. 2009, 11, 2643. f Chiba, S.; Hattori, G.; Narasaka, K. Chem. Lett. 2007, 36, 52. g Bodunov, V. A.; Galenko, E. E.; Galenko, A. V.; Novikov, M. S.; Khlebnikov, A. F. Synthesis 2018, 2784. h Galenko, E. E.; Bodunov, V. A.; Galenko, A. V.; Novikov, M. S.; Khlebnikov, A. F. J. Org. Chem. 2017, 82, 8568.Google Scholar
  3. 3.
    (a) Hugener, M.; Heimgartner, H. Helv. Chim. Acta 1989, 72, 172. (b) Hugener, M.; Heimgartner, H. Helv. Chim. Acta 1995, 78, 1823.Google Scholar
  4. 4.
    Pfoertner, K.-H.; Montavon, F.; Bernauer, K. Helv. Chim. Acta 1985, 68, 600.CrossRefGoogle Scholar
  5. 5.
    Aeppli, L.; Bernauer, K.; Schneider, F.; Strub, K.; Oberhänsli, W. E.; Pfoertner, K.-H. Helv. Chim. Acta 1980, 63, 630.CrossRefGoogle Scholar
  6. 6.
    (a) Khlebnikov, A. F.; Novikov, M. S.; Pakalnis, V. V.; Yufit, D. S. J. Org. Chem. 2011, 76, 9344. (b) Rostovskii, N. V.; Novikov, M. S.; Khlebnikov, A. F.; Yufit, D. S. Chem. Heterocycl. Compd. 2017, 53, 985. [Khim. Geterotsikl. Soedin. 2017, 53, 985.] (c) Rostovskii, N. V.; Novikov, M. S.; Khlebnikov, A. F.; Khlebnikov, V. A.; Korneev, S. M. Tetrahedron 2013, 69, 4292.Google Scholar
  7. 7.
    Novikov, M. S.; Khlebnikov, A. F.; Rostovskii, N. V.; Tcyrulnikov, S.; Suhanova, A. A.; Zavyalov, K. V.; Yufit, D. S. J. Org. Chem. 2015, 80, 18.CrossRefGoogle Scholar
  8. 8.
    (a) Demoulin, A.; Gorissen, H.; Hesbain-Frisque, A.-M.; Ghosez, L. J. Am. Chem. Soc. 1975, 97, 4409. (b) Ning, Y.; Otani, Y.; Ohwada, T. J. Org. Chem. 2017, 82, 6313. (c) Mekhael, M. K. G.; Bienz, S.; Linden, A.; Heimgartner, H. Helv. Chim. Acta 2004, 87, 2385.Google Scholar
  9. 9.
    (a) Ryu, T.; Baek, Y.; Lee, P. H. J. Org. Chem. 2015, 80, 2376. (b) Wang, Y.; Lei, X.; Tang, Y. Chem. Commun. 2015, 51, 4507. (c) Zhao, Y.-Z.; Yang, H.-B.; Tang, X.-Y.; Shi, M. Chem.–Eur. J. 2015, 21, 3562. (d) Ding, H.; Hong, S.; Zhang, N. Tetrahedron Lett. 2015, 56, 507.Google Scholar
  10. 10.
    (a) Shabalin, D. A.; Schmidt, E. Yu.; Trofimov, B. A. In Targets in Heterocyclic Chemistry; Attanasi, O. A.; Spinelli, D., Eds.; Italian Society of Chemistry: Roma, 2017, Vol. 21, p. 54. (b) Belikov, M. Yu.; Ershov, O. V. Chem. Heterocycl. Compd. 2016, 52, 279. [Khim. Geterotsikl. Soedin. 2016, 52, 279.]Google Scholar
  11. 11.
    Rostovskii, N. V.; Ruvinskaya, J. O.; Novikov, M. S.; Khlebnikov, A. F.; Smetanin, I. A.; Agafonova, A. V. J. Org. Chem. 2017, 82, 256.CrossRefGoogle Scholar
  12. 12.
    Schulthess, A. H.; Hansen, H.-J. Helv. Chim. Acta 1981, 64, 1322.CrossRefGoogle Scholar
  13. 13.
    Hirakawa, K.; Ogiue, E.; Motoyoshiya, J.; Kakurai, T. J. Org. Chem. 1986, 51, 1083.CrossRefGoogle Scholar
  14. 14.
    Shi, Y.; Yu, X.; Li, C.-Y. Eur. J. Org. Chem. 2015, 6429.Google Scholar
  15. 15.
    (a) Palatinus, L.; Chapuis, G. J. Appl. Crystallogr. 2007, 40, 786. (b) Palatinus, L.; van der Lee, A. J. Appl. Crystallogr. 2008, 41, 975. (c) Palatinus, L.; Prathapa, S. J.; van Smaalen, S. J. Appl. Crystallogr. 2012, 45, 575.Google Scholar
  16. 16.
    Sheldrick, G. M. Acta Crystallogr., Sect. C: Struct. Chem. 2015, C71, 3.Google Scholar
  17. 17.
    Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. J. Appl. Crystallogr. 2009, 42, 339.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Adel R. Khaidarov
    • 1
  • Nikolai V. Rostovskii
    • 1
  • Galina L. Starova
    • 1
  • Alexander F. Khlebnikov
    • 1
  • Mikhail S. Novikov
    • 1
    Email author
  1. 1.Institute of ChemistrySaint Petersburg State UniversitySaint PetersburgRussia

Personalised recommendations