Advertisement

Chemistry of Heterocyclic Compounds

, Volume 54, Issue 9, pp 848–851 | Cite as

Reaction of 4-methyl-2-trifluoromethyl-1,3-oxazin-6-one with indoles

  • Sergey А. Usachev
  • Kristina M. Tabatchikova
  • Dmitri V. Sevenard
  • Vyacheslav Ya. Sosnovskikh
Article
  • 10 Downloads

The addition of indoles to 4-methyl-2-trifluoromethyl-1,3-oxazin-6-one in an acidic medium proceeds at the C-2 atom and leads to 2-(indol-3-yl)-4-methyl-2-trifluoromethyl-2,3-dihydro-1,3-oxazin-6-ones in 67–83% yields. Pyrroles and N,N-dimethylaniline either do not enter into a reaction of this type or form the addition products in very low yields (6–12%).

Keywords

indoles 2-(indol-3-yl)-4-methyl-2-trifluoromethyl-2,3-dihydro-1,3-oxazin-6-ones 1,3-oxazin-6-one pyrroles nucleophilic addition 

Notes

Acknowledgments

This work was supported by the Russian Foundation for Basic Research (grant 17-03-00340).

Elemental analysis was carried out and 1H, 13C, 19F NMR spectra recorded using equipment of the Center for Joint Use ''Spectroscopy and Analysis of Organic Compounds'' at the Postovsky Institute of Organic Synthesis, Russian Academy of Sciences (Ural Branch).

References

  1. 1.
    (a) Pratap, R.; Ram, V. J. Tetrahedron 2017, 73, 2529.(b) McGlacken, G. P.; Fairlamb, I. J. S. Nat. Prod. Rep. 2005, 22, 369.Google Scholar
  2. 2.
    (a) Usachev, B. I. J. Fluorine Chem. 2015, 175, 36. (b) Usachev, S. A.; Usachev, B. I.; Sosnovskikh, V. Y. Chem. Heterocycl. Compd. 2017, 53, 1294. [Khim. Geterotsikl. Soedin. 2017, 53, 1294.] (c) Usachev, S. A.; Popova, N. V.; Moshkin, V. S.; Sosnovskikh, V. Y. Chem. Heterocycl. Compd. 2015, 51, 913. [Khim. Geterotsikl. Soedin. 2015, 51, 913.] (d) Usachev, S. A.; Usachev, B. I.; Eltsov, O. S.; Sosnovskikh, V. Y. Tetrahedron 2014, 70, 8863.Google Scholar
  3. 3.
    (a) Karad, S. N.; Chung, W.-K.; Liu, R.-S. Chem. Sci. 2015, 6, 5964. (b) Boger, D. L.; Wysocki, R. J. J. Org. Chem. 1989, 54, 714. (c) Steglich, W.; Buschmann, E.; Hollitzer, O. Angew. Chem., Int. Ed. 1974, 13, 533.Google Scholar
  4. 4.
    (a) Riva, R.; Banfi, L.; Basso, A.; Zito, P. Org. Biomol. Chem. 2011, 9, 2107. (b) Jeong, J. U.; Chen, X.; Rahman, A.; Yamashita, D. S.; Luengo, J. I. Org. Lett. 2004, 6, 1013.Google Scholar
  5. 5.
    Clemence, F.; Le Martret, O.; Delavallee, F. US Patent 4925859, 1990.Google Scholar
  6. 6.
    Sevenard, D. V; Lorenz, D.; Sosnovskikh, V. Y. Russ. Chem. Bull., Int. Ed. 2016, 65, 847. [Izv. Akad. Nauk, Ser. Khim. 2016, 847.]Google Scholar
  7. 7.
    Steglich, W.; Jeschke, R.; Buschmann, E. Gazz. Chim. Ital. 1986, 116, 361.Google Scholar
  8. 8.
    Yao, S.-J.; Ren, Z.-H.; Wang, Y.-Y.; Guan, Z.-H. J. Org. Chem. 2016, 81, 4226.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Sergey А. Usachev
    • 1
  • Kristina M. Tabatchikova
    • 1
  • Dmitri V. Sevenard
    • 2
  • Vyacheslav Ya. Sosnovskikh
    • 1
  1. 1.Institute of Natural Sciences and Mathematics of Ural Federal UniversityYekaterinburgRussia
  2. 2.Hansa Fine Chemicals GmbH, Bremen Innovation and Technology CentreBremenGermany

Personalised recommendations