Advertisement

Chemistry of Heterocyclic Compounds

, Volume 54, Issue 8, pp 780–783 | Cite as

Selective reduction of N-nitroso aza-aliphatic cyclic compounds to the corresponding N-amino products using zinc dust in CO2–H2O medium

  • Weiqing Yang
  • Xiang Lu
  • Tingting Zhou
  • Yongjing Cao
  • Yuanyuan Zhang
  • Menglin Ma
Article
  • 15 Downloads

A new method for reduction of N-nitroso aza-aliphatic cyclic compounds employing zinc in pressurized CO2–H2O medium has been developed. H2O and NH4Cl were used as hydrogen donors, and reduction was performed under environmentally benign conditions. The presented approach allowed to obtain the respective N-amino products selectively and in excellent yields (up to 97%).

Keywords

zinc N-amino group aza-aliphatic cycle N-nitroso group system carbon dioxide – water reduction 

Notes

The authors are grateful to the Ministry of Education, ''Chunhui Projects'' project Z2016163) and the Scientific Research Foundation of the Education Department of Sichuan Province (project 12ZB128) for financial support.

Supplementary material

10593_2018_2349_MOESM1_ESM.pdf (2.7 mb)
ESM 1 (PDF 2755 kb)

References

  1. 1.
    (a) Fang, Z.; Yang, Z.; Xu, J.-F.; Guo, K.; Wei, P. Org. Prep. Proced. Int. 2012, 44, 164. (b) Xia, T.; Hu, Z.; Ji, W.; Zhang, S.; Shi, H.; Liu, C.; Pang, B.; Liu, G.; Liao, X. Org. Chem. Front. 2018, 5, 850. (c) Eissa, S. I. Med. Chem. Res. 2017, 26, 2205.Google Scholar
  2. 2.
    (a) Lucarini, M.; Pedulli, G. F.; Lazzari, D. J. Org. Chem. 2000, 65, 2723. (b) Dhainaut, A.; Régnier, G.; Atassi, G.; Pierré, A.; Léonce, S.; Kraus-Berthier, L.; Prost, J.-F. J. Med. Chem. 1992, 35, 2481.Google Scholar
  3. 3.
    (a) Zhang, Y.; Tang, Q.; Luo, M. Org. Biomol. Chem. 2011, 9, 4977. (b) Lunn, G.; Sansone, E. B.; Keefer, L. K. J. Org. Chem. 1984, 49, 3470.Google Scholar
  4. 4.
    (a) Orlandi, M.; Brenna, D.; Harms, R.; Jost, S.; Benaglia, M. Org. Process Res. Dev. 2018, 22, 430. (b) Wang, D.; Astruc, D. Chem. Rev. 2015, 115, 6621.Google Scholar
  5. 5.
    (a) Klager, K.; Wilson, E. M.; Helm-kamp, G. Ind. Eng. Chem. 1960, 52, 119. (b) Tungler, A.; Szabados, E. Org. Process Res. Dev. 2016, 20, 1246.Google Scholar
  6. 6.
    (a) Kelley, J. L.; Thompson, J. B.; Styles, V. L.; Soroko, F. E.; Cooper, B. R. J. Heterocycl. Chem. 1995, 32, 1423. (b) Bellasio, E.; Campi, A.; Di Mola, N.; Baldoli, E. J. Med. Chem. 1984, 27, 1077.Google Scholar
  7. 7.
    Manetti, D.; Di Cesare Mannelli, L.; Dei, S.; Galeotti, N.; Ghelardini, C.; Romanelli, M. N.; Scapecchi, S.; Teodori, E.; Pacini, A.; Bartolini, A.; Gualtieri, F. J. Med. Chem. 2005, 48, 6491.CrossRefGoogle Scholar
  8. 8.
    (a) Waibel, M.; Hasserodt, J. J. Org. Chem. 2008, 73, 6119. (b) Klein, J. T.; Davis, L.; Effland, R. C. J. Heterocycl. Chem. 1987, 24, 725.Google Scholar
  9. 9.
    (a) Anastas, P.; Eghbali, N. Chem. Soc. Rev. 2010, 39, 301. (b) Sheldon, R. A. Chem. Soc. Rev. 2012, 41, 1437. (c) Simon, M.-O.; Li, C.-J. Chem. Soc. Rev. 2012, 41, 1415.Google Scholar
  10. 10.
    (a) Pigaleva, M. A.; Elmanovich, I. V.; Kononevich, Y. N.; Gallyamov, M. O.; Muzafarov, A. M. RSC Adv. 2015, 5, 103573. (b) Jiang, H.-F.; Huang, X.-Z. J. Supercrit. Fluids 2007, 43, 291. (c) Tundo, P.; Loris, A.; Selva, M. Green Chem. 2007, 9, 777. (d) Li, G.; Jiang H.; Li, J. Green Chem. 2001, 3, 250. (e) Gao, G.; Tao, Y.; Jiang, J. Green Chem. 2008, 10, 439. (f) Liu, S.; Wang, Y.; Yang, X.; Jiang J. Res. Chem. Intermed. 2012, 38, 2471. g Jiang, H.-F.; Dong, Y.-S. Chin. J. Chem. 2008, 26, 1407.Google Scholar
  11. 11.
    (a) Gao, G.; Jiang, J.-Y. Comput. Appl. Chem. 2011, 28, 359 (In Chinese). (b) Roosen, C.; Ansorge-Schumacher, M.; Mang, T.; Leitner, W.; Greiner, L. Green Chem. 2007, 9, 455.Google Scholar
  12. 12.
    Liu, S.; Wang, Y.; Jiang, J.; Jina, Z. Green Chem. 2009, 11, 1397.CrossRefGoogle Scholar
  13. 13.
    Toews, K. L.; Shroll, R. M.; Wai, C. M.; Smart, N. G. Anal. Chem. 1995, 67, 4040.CrossRefGoogle Scholar
  14. 14.
    (a) Dutcher, B.; Fan, M.; Russell, A. G. ACS Appl. Mater. Interfaces 2015, 7, 2137. (b) Lee, B.; Stowe, H. M.; Lee, K. H.; Hur, N. H.; Hwang, S-J.; Paek, E.; Hwang, G. S. Phys. Chem. Chem. Phys. 2017, 19, 24067.Google Scholar
  15. 15.
    Kushakova, P. M.; Kuznetsov, V. A.; Chernobroviy, A. N.; Garabadgiu, A. V. Chem. Heterocycl. Compd. 2004, 40, 960. [Khim. Geterotsikl. Soedin. 2004, 1111.]CrossRefGoogle Scholar
  16. 16.
    Mayer, N; Schweiger, M; Melcher, M.-C.; Fledelius, C.; Zechner, R.; Zimmermann, R.; Breinbauer, R. Bioorg. Med. Chem. 2015, 23, 2904.CrossRefPubMedCentralGoogle Scholar
  17. 17.
    Ilisson, M.; Tomson, K.; Selyutina, A.; Türk, S.; Mäeorg, U. Synth. Commun. 2015, 45, 1367.CrossRefGoogle Scholar
  18. 18.
    Lebrun, S; Couture, A; Deniau, E; Grandclaudon, P. Synthesis 2006, 3490.Google Scholar
  19. 19.
    Shaaban, S.; Oh, J.; Maulide, N. Org. Lett. 2016, 18, 345.CrossRefGoogle Scholar
  20. 20.
    Zhou, S.; Wang, J.; Zhang, F.; Song, C.; Zhu, J. Org. Lett. 2016, 18, 2427.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Weiqing Yang
    • 1
  • Xiang Lu
    • 1
  • Tingting Zhou
    • 1
  • Yongjing Cao
    • 1
  • Yuanyuan Zhang
    • 1
    • 2
  • Menglin Ma
    • 1
  1. 1.School of ScienceXihua UniversityChengduChina
  2. 2.Key Laboratory of Green Chemistry and Technology, Faculty of ChemistrySichuan UniversityChengduChina

Personalised recommendations