Advertisement

Chemistry of Heterocyclic Compounds

, Volume 54, Issue 5, pp 528–534 | Cite as

Fluorinated tetraketone derivatives of N-substituted carbazoles and their Eu(III) complexes for fluorescence immunoassay

  • Dmitriy E. Pugachov
  • Tatiana S. Kostryukova
  • Georgy V. Zatonsky
  • Sergey Z. Vatsadze
  • Nikolai V. Vasil’ev
Article

New fluorinated tetraketone derivatives of N-substituted carbazoles were synthesized and tested as ligands for fluorescence immunoassay. The spectral properties of the obtained heterocyclic tetraketones and their Eu(III) complexes were studied. The complexes showed longwave absorption at 360–380 nm, high extinction coefficient values, long lifetime of excited states, and intense luminescence, allowing to consider the use of such lanthanide complexes in immunofluorescence analysis.

Keywords

carbazole derivatives europium fluorinated β-diketones tetraketones immunofluorescence analysis luminescence 

References

  1. 1.
    Yamada, S.; Miyoshi, F.; Kano, K.; Ogawa, T. Anal. Chim. Acta 1981, 127, 195.CrossRefGoogle Scholar
  2. 2.
    Hemmilä, I. Clin. Chem. 1985, 31, 359.Google Scholar
  3. 3.
    Diamandis, E. P. Clin. Biochem. 1988, 21, 139.CrossRefGoogle Scholar
  4. 4.
    Hemmilä, I. J. Alloys Compd. 1995, 225, 480.CrossRefGoogle Scholar
  5. 5.
    Bekman, N. I.; Laricheva, S. Yu.; Pomelova, V. G.; Osin, N. S. Clinical laboratory diagnostics [in Russian] 2010, 12, 33.Google Scholar
  6. 6.
    Handbook on the Physics and Chemistry of Rare Earths; Gschneidner, K. A., Jr.; Bünzli, J.-C. G.; Pecharsky, V. K.; Eds.; Elsevier, 2005, Vol. 35, Chapter 225, p. 226.Google Scholar
  7. 7.
    Hemmilä, I.; Mukkala, V.-M. Crit. Rev. Clin. Lab. Sci. 2001, 38, 441.CrossRefGoogle Scholar
  8. 8.
    Comprehensive Inorganic Chemistry II: From Elements to Applications; Drozdov, A.; Kuzmina, N., Eds.; Elsevier, 2013, 2nd ed., Vol. 2, p. 511.Google Scholar
  9. 9.
    Utochnikova, V. V.; Kuz'mina, N. P. Coordination chemistry [in Russian] 2016, 42, 640.Google Scholar
  10. 10.
    Yuan, J.; Matsumoto, K. J. Pharm. Biomed. Anal. 1997, 15, 1397.CrossRefGoogle Scholar
  11. 11.
    Wu, F.-B.; Han, S.-Q.; Zhang, C.; He, Y.-F. Anal. Chem. 2002, 74, 5882.CrossRefGoogle Scholar
  12. 12.
    Romanov, D. V.; Lyamin, A. I.; Ivanovskaya, N. P.; Moiseev, S. V.; Zhedulov, A. E.; Osin, N. S.; Vasil'ev, N. V. RU patent 2296756.Google Scholar
  13. 13.
    He, P.; Wang, H. H.; Liu, S. G.; Shi, J. X.; Wang, G.; Gong, M. L. Inorg. Chem. 2009, 48, 11382.CrossRefGoogle Scholar
  14. 14.
    Romanov, D. V.; Lyamin, A. I.; Ivanovskaya, N. P.; Zhedulov, A. E.; Osin, N. S.; Vasil'ev, N. V. RU patent 2373200.Google Scholar
  15. 15.
    Kostryukova, T. S.; Ivanovskaya, N. P.; Lyamin, A. I.; Romanov, D. V.; Osin, N. S.; Zatonsky, G. V.; Vasil'ev, N. V. Russ. J. Gen. Chem. 2012, 82, 455. [Zh. Obshch. Khim., 2012, 82, 462.]Google Scholar
  16. 16.
    Kostryukova, T. S.; Ivanovskaya, N. P.; Zatonsky, G. V.; Osin, N. S.; Vasil'ev, N. V. Russ. J. Bioorg. Chem. 2015, 41, 186. [Bioorg. Khim. 2015, 41, 212.]Google Scholar
  17. 17.
    Osin, N. S.; Pomelova, V. G.; Shlyakova, S. Yu.; Bulatov, А. А.; Osipova, T. А.; Sigal, E. R.; Koryazova, L. K.; Martynov, A. V. Biotekhnologiya 1997, 9–10, 49.Google Scholar
  18. 18.
    Stevens, S. T.; Tucker, S. H. J. Chem. Soc., Perkin. Trans. 1 1923, 123, 2140.Google Scholar
  19. 19.
    Cho, J.-H.; Ryu, Y.-S.; Oh, S.-H.; Kwon, J.-K.; Yum, E.-K. Bull. Korean Chem. Soc. 2011, 32, 2461.Google Scholar
  20. 20.
    de Montmollin, G.; de Montmollin, M. Helv. Chim. Acta 1923, 6, 94.Google Scholar
  21. 21.
    Mitchell, D. R; Plant, S. G. P. J. Chem. Soc. 1936, 1295.Google Scholar
  22. 22.
    Filyakova, V. I.; Karpenko, N. S.; Kuznetsova, O. A.; Pashkevich, K. I. Russ. J. Org. Chem. 1998, 34, 381. [Zh. Org. Khim. 1998, 34, 411.]Google Scholar
  23. 23.
    Paskevich, K. I.; Saloutin, V. I.; Postovskii, I. Ya. Russ. Chem. Rev. 1981, 50, 180. [Usp. Khim. 1981, 50, 325.]Google Scholar
  24. 24.
    Structure Determination of Organic Compounds; Pretsch, E.; Bühlmann, P.; Badertscher, M., Eds.; Springer, 2000, p. 288.Google Scholar
  25. 25.
    Yuan, J.; Sueda, S.; Somazava, R.; Matsumoto, K.; Matsumoto, K. Chem. Lett. 2003, 32, 492.CrossRefGoogle Scholar
  26. 26.
    Tsaryuk, V.; Zolin, V.; Legendziewicz, J. J. Lumin. 2003, 102-103, 744.Google Scholar
  27. 27.
    Hemmilä, I.; Mukkala, V.-M.; Latva, M.; Kiilholma, P. J. Biochem. Biophys. Methods 1993, 26, 283.CrossRefGoogle Scholar
  28. 28.
    Latva, M.; Takalo, H.; Mukkala, V.-M.; Matachescu, C.; Rodriguez-Ubis, J. C.; Kankarea, J. J. Lumin. 1997, 75, 149.CrossRefGoogle Scholar
  29. 29.
    Hemmilä, I.; Dakubu, S. US Patent 4565790.Google Scholar
  30. 30.
    Gordon, A. J.; Ford, R. A. The Chemist's Companion [Russian translation]; Mir: Moscow, 1976, p. 571.Google Scholar
  31. 31.
    Buu-Hoi; Ryer, R. Recl. Trav. Chim. Pays–Bas Belg. 1947, 66, 533.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Dmitriy E. Pugachov
    • 1
    • 2
  • Tatiana S. Kostryukova
    • 2
  • Georgy V. Zatonsky
    • 2
  • Sergey Z. Vatsadze
    • 3
  • Nikolai V. Vasil’ev
    • 1
    • 2
  1. 1.Moscow State Regional UniversityMoscowRussia
  2. 2.State Research Institute of Biological EngineeringMoscowRussia
  3. 3.Lomonosov Moscow State UniversityMoscowRussia

Personalised recommendations