Advertisement

Chemistry of Heterocyclic Compounds

, Volume 53, Issue 1, pp 54–65 | Cite as

Synthesis, structure, and properties of luminescent diazaborole and indole systems

  • Lothar WeberEmail author
  • Daniel Eickhoff
  • Anna Chrostowska
  • Clovis Darrigan
  • Hans-Georg Stammler
  • Beate Neumann
Article

Thiophenes and phenylacetylenes, decorated with 1-methylindol-2-yl, 1,3,2-benzodiazaborol-2-yl, 1,3,2-diazaborol-2-yl, or 1,3,2-diazaborolidinyl groups at one end and dimesitylborolyl or CN substituents at the opposite end of the molecules, were synthesized. Upon UV irradiation, these push-pull systems in THF solution gave rise to bright-blue emission with Stokes shifts ranging from 4100 to 9300 cm–1 and quantum efficiencies up to 0.99. Thereby intramolecular charge transfer took place from the HOMO of the indolyl or borolyl fluorophores to the LUMO, mainly centered on the electron-withdrawing cyano or dimesitylboranyl group.

Keywords

1,3,2-diazaborole indole thiophene luminescence photophysics push-pull molecules 

Supplementary material

10593_2017_2021_MOESM1_ESM.pdf (2.1 mb)
ESM 1 (PDF 2158 kb)

References

  1. 1.
    (a) Entwistle, C. D.; Marder, T. B. Angew. Chem., Int. Ed. 2002, 41, 2927. (b) Entwistle, C. D.; Marder, T. B. Chem. Mater. 2004, 16, 4574. (c) Yamaguchi, S.; Wakayama, A. Pure Appl. Chem. 2006, 78, 1413. (d) Jäkle, F. Coord. Chem. Rev. 2006, 250, 1107.Google Scholar
  2. 2.
    (a) Yuan, Z.; Taylor, N. J.; Marder, T. B.; Williams, D. S.; Kurtz, S. K.; Cheng, L.-T. J. Chem. Soc., Chem. Commun. 1990, 1489. (b) Yuan, Z; Taylor, N. J.; Marder, T. B.; Williams, I. D.; Kurtz, S. K.; Cheng, L-T. Organic Materials for Non-Linear Optic II; Hann, R. A.; Bloor, D., Eds.; Royal Society of Chemistry: Cambridge, 1991, p. 190. (c) Lequan, M.; Lequan, R. M.; Chane-Ching, K. J. Mater. Chem. 1991, 1, 997. (d) Lequan, M.; Lequan, R. M.; Chane-Ching, K.; Barzoukas, M.; Fort, A ; Lahoucine, H.; Bravic, G.; Chasseau, J.; Gaultier, J. J Mater. Chem. 1992, 2, 719. (e) Lequan, M.; Lequan, R. M.; Chang-Ching, K.; Callier, A.-C.; Barzoukas, M.; Fort, A. Adv. Mater. Opt. Electron. 1992, 1. 243. (f) Yuan, Z.; Taylor, N. J.; Sun, Y.; Marder, T. B.; Williams, I. D.; Cheng, L.-T. J. Organomet. Chem. 1993, 449, 27. (g) Branger, C.; Lequan, M.; Lequan, R. M.; Barzoukas, M.; Fort, A. J. Mater. Chem. 1996, 6, 555. (h) Yuan, Z.; Taylor, N. J.; Ramachandran, R.; Marder, T. B. Appl. Organomet. Chem. 1996, 10, 305. (i) Yuan, Z.; Collings, J. C.; Taylor, N. J.; Marder, T. B.; Jardin, C.; Halet, J.-F. J. Solid State Chem. 2000, 154, 5. (j) Liu, Y.; Xu, X; Zheng, F.; Cui, Y. Angew. Chem., Int. Ed. 2008, 47, 4538.Google Scholar
  3. 3.
    Yuan, Z.; Entwistle, C. D.; Collings, J. C.; Albesa-Jové, D.; Batsanov, A. S.; Howard, J. A. K.; Taylor, N. J.; Kaiser, K. M.; Kaufmann, D. E.; Poon, S.-Y.; Wong, W. J.; Jardin, C.; Fathallah, S.; Boucekkine, A.; Halet, J.-F.; Marder, T. B. Chem.–Eur. J. 2006, 12, 2758.CrossRefGoogle Scholar
  4. 4.
    (a) Liu, Z .Q.; Fang, Q.; Wang, D.; Xue, G.; Yu, W. T.; Shao, Z. S.; Jiang, M.-H. Chem. Commun. 2002, 2900. (b) Liu, Z.-Q.; Fang, Q.; Cao, D. X.; Xue, G.; Yu, W. T.; Lei, H. Chem.–Eur. J. 2003, 9, 5074. (c) Cao, D. X.; Liu, Z.-Q.; Fang, Q.; Xu, G.-B.; Xue, G.; Liu, G.-Q.; Yu, W.-T. J. Organomet. Chem. 2004, 689, 2201. (d) Liu, Z.-Q.; Fang, Q.; Cao, D.-X.; Wang, D.; Xu, G.-B. Org. Lett. 2004, 6, 2933. (e) Liu, Z.-Q.; Shi, M.; Li, F.-Y.; Fang, Q.; Chen, Z.-H.; Yi, T.; Huang, C.-H. Org. Lett. 2005, 7, 5481. (f) Charlot, M.; Porrès, L.; Entwistle, C. D.; Beeby, A.; Marder, T. B.; Blanchard-Desce, M. Phys. Chem. Chem. Phys. 2005, 7, 600. (g) Porrès, L.; Charlot, M.; Entwistle, C. D.; Beeby, A.; Marder, T. B.; Blanchard-Desce, M. Proc. SPIE-Int. Soc. Opt. Eng. 2005, 5934, 59340F. (h) Cao, D.-X.; Liu, Z.-Q; Li, G.-Z.; Liu, G.-Q.; Zhang, G.-H. J. Mol. Struct. 2008, 874, 46. (i) Collins, J. C.; Poon, S.-Y.; Le Droumaguet, C.; Charlot, M.; Katan, C.; Pålsson, L.-O.; Beeby, A.; Mosely, J. A.; Kaiser, H. M.; Kaufmann, D.; Wong, W.-Y.; Blanchard-Desce, M.; Marder, T. B. Chem.–Eur. J. 2009, 15, 198. (j) Zhao, S.-B.; Wucher, P.; Mc Cormick, T. M.; Liu, X.-Y.; Wang, S.; Feng, X.-D.; Lu, Z.-H.; Organometallics 2008, 27, 6446.Google Scholar
  5. 5.
    (a) Noda, T.; Shirota, Y. J. Am. Chem. Soc. 1998, 120, 9714. (b) Noda, T.; Ogawa, H.; Shirota, Y. Adv. Mater. 1999, 11, 283. (c) Noda, T.; Shirota, Y. J. Lumin. 2000, 87–89, 1168. (d) Shirota, Y.; Kinoshita, M.; Noda, T.; Okumoto, K.; Ohara, T. J. Am. Chem. Soc. 2000, 122, 11021. (e) Kinoshita, M.; Fujii, N.; Tsuzuki, T.; Shirota, Y. Synth. Met. 2001, 121, 1571. (f) Doi, H.; Kinoshita, M.; Okumotu, K.; Shirota, Y. Chem. Mater. 2003, 15, 1080. (g) Jia, W.-L.; Bai, D.-R.; Mc Cormick, T.; Liu, Q.-D.; Motala, M.; Wang, R.-Y.; Seward, C.; Tao, Y; Wang, S. Chem.–Eur. J. 2004, 10, 994. (h) Jia, W.-L.; Feng, D.; Bai, D. R.; Lu, Z.-H.; Wang, S.; Vamvounis, G. Chem. Mater. 2005, 17, 164. (i) Mazzeo, M.; Vitale, V.; Della Sala, F.; Anni, M.; Barbarella, G.; Favaretto, L.; Sotgui, G.; Cingolani, R.; Gigli, G. Adv. Mater. 2005, 17, 34. (j) Zhou, G.-J.; Ho, C.-L.; Wong, W.-Y.; Wang, Q.; Ma, D.-G.; Wang, L.-X.; Lin, Z.-Y.; Marder, T. B.; Beeby, A. Adv. Funct. Mater. 2008, 18, 499.Google Scholar
  6. 6.
    Glogowski, M. E.; Williams, J. L. R. J. Organomet. Chem. 1981, 218, 137.CrossRefGoogle Scholar
  7. 7.
    Schulz, A.; Kaim, W. Chem. Ber. 1989, 122, 1863.CrossRefGoogle Scholar
  8. 8.
    Zhao, C. H.; Wakamiya, A.; Inukai, Y.; Yamaguchi, S. J. Am. Chem. Soc. 2006, 128, 15934.CrossRefGoogle Scholar
  9. 9.
    Wakamiya, A.; Mori, K.; Yamaguchi, S. Angew. Chem., Int. Ed. 2007, 46, 4273.CrossRefGoogle Scholar
  10. 10.
    (a) Weber, L. Coord. Chem. Rev. 2001, 215, 39. (b) Weber, L. Coord. Chem. Rev. 2008, 252, 1. (c) Weber, L.; Böhling, L. Coord. Chem. Rev. 2015, 284, 236. (d) Weber, L. Eur. J. Inorg. Chem. 2012, 5595. (e) Yamashita, M.; Nozaki, K. J. Synth. Org. Chem. Jpn. 2010, 68, 359. (f) Yamashita, M.; Nozaki, K. Bull. Chem. Soc. Jpn. 2008, 81, 1377. (h) Weber, L.; Wartig, H. B.; Stammler, H.-G.; Neumann, B. Organometallics 2001, 20, 5248. (i) Weber, L.; Wartig, H. B.; Stammler, H.-G.; Neumann, B. Z. Anorg. Allg. Chem. 2001, 627, 2663. (j) Weber, L.; Domke, I; Greschner, W.; Miqueu, K.; Chrostowska, A.; Baylère, P. Organometallics 2005, 24, 5455.Google Scholar
  11. 11.
    (a) Habereder, T.; Nöth, H. Appl. Organomet. Chem. 2003, 17, 525. (b) Weber, L.; Domke, I.; Kahlert, J.; Stammler, H.-G. Eur. J. Inorg. Chem. 2006, 3419. (c) Weber, L.; Rausch, A; Stammler, H.-G.; Neumann, B. Z. Anorg. Allg. Chem. 2004, 630, 2657. (d) Weber, L.; Förster, J.; Stammler, H.-G.; Neumann, B. Eur. J. Inorg. Chem. 2006, 5048. (e) Weber, L.; Schnieder, M.; Maciel, T. C.; Wartig, H.; Schimmel, M.; Boese, R.; Bläser, D. Organometallics 2000, 19, 5791. (f) Murphy, J. M.; Lawrence, J. D.; Kawamura, K.; Incarvito, C.; Hartwig, J. F. J. Am. Chem. Soc. 2006, 128, 13684. (g) Segawa, Y.; Yamashita, M.; Nozaki, K. Science 2006, 314, 113. (h) Marder, T. B. Science 2006, 314, 69. (i) Braunschweig, H. Angew.Chem., Int. Ed. 2007, 46, 1946. (j) Segawa, Y.; Yamashita, M.; Nozaki, K. Angew. Chem., Int. Ed. 2007, 46, 6710. (k) Kajiwara, T.; Terebayashi, T.; Yamashita, M.; Nozaki, K. Angew. Chem., Int. Ed. 2008, 47, 606. (l) Segawa, Y.; Suzuki, Y; Yamashita, M.; Nozaki, K. J. Am. Chem. Soc. 2008, 130, 16069. (m) Yamashita, M.; Suzuki, Y.; Segawa, Y.; Nozaki, K. Chem. Lett. 2008, 37, 802. (n) Terebayashi, T.; Kajiwara, T.; Yamashita, M.; Nozaki, K. J. Am. Chem. Soc. 2009, 131, 14162. (o) Nozaki, K.; Arami, Y.; Yamashita, M.; Ueng, S.-H.; Malacria, M.; Lacôte, E.; Curran, D. P. J. Am. Chem. Soc. 2010, 132, 11449. (p) Hayashi, Y.; Segawa, Y.; Yamashita, M.; Nozaki, K. Chem. Commun. 2011, 47, 5888. (q) Segawa, Y.; Yamashita, M.; Nozaki, K. Organometallics 2009, 28, 6234. (r) Hasegawa, M.; Segawa, Y.; Yamashita, M.; Nozaki, K. Angew. Chem., Int. Ed. 2012, 51, 6956. (s) Dettenrieder, H.; Dietrich , H. M.; Schädle, C.; Maichle-Mössmer, C.; Törnroos, K. W.; Anwander, R. Angew. Chem., Int. Ed. 2012, 51, 4461. (t) Protochenko, A. V.; Birjkumar, K. H.; Dange, D.; Schwarz, A. D.; Vidovic, D.; Jones, C.; Kaltsoyannis, N.; Mountford, P.; Aldridge, S. J. Am. Chem. Soc. 2012, 134, 6500. (u) Saleh, L. M. A.; Nirjkumar, K. H.; Protochenko, A. V.; Schwarz, A. D.; Aldridge, S.; Jones, C.; Kaltsoyannis, N.; Mountford, P. J. Am. Chem. Soc. 2011, 133, 3836. (v) Li, S.; Cheng, J.; Chen, Y.; Nishiura, M.; Hou, Z. Angew. Chem., Int. Ed. 2011, 50, 6360. (w) Tian, D.; Jiang, J.; Hu, H.; Zhang, J.; Cui, C. J. Am. Chem. Soc. 2012, 134, 14666. (x) Hinchcliffe, A.; Mair, F. S.; McInnes, E. J. L.; Pritchard, R. G.; Warren, J. E. Dalton Trans. 2008, 222. (y) Giziroglu, E.; Donnadieu, B.; Bertrand, G. Inorg. Chem. 2008, 47, 9751.Google Scholar
  12. 12.
    (a) Weber, L.; Penner, A.; Stammler, H.-G.; Neumann, B. Z. Anorg. Allg. Chem. 2007, 633, 563. (b) Weber, L.; Eickhoff, D.; Werner, V.; Böhling, L.; Schwedler, S.; Chrostowska, A.; Dargelos, A.; Maciejczyk, M.; Stammler, H.-G.; Neumann, B. Dalton Trans. 2011, 40, 4434. (c) Schwedler, S.; Eickhoff, D.; Brockhinke, R.; Cherian, D.; Weber, L.; Brockhinke, A. Phys. Chem. Chem. Phys. 2011, 13, 9301. (d) Weber, L.; Werner, V.; Domke, I.; Stammler, H.-G.; Neumann, B. Dalton Trans. 2006, 3777. (e) Chrostowska, A.; Maciejczyk, M.; Dargelos, A.; Baylère, P.; Weber, L.; Werner, V.; Eickhoff, D.; Stammler, H.-G.; Neumann, B. Organometallics 2010, 29, 5192.Google Scholar
  13. 13.
    Weber, L.; Werner, V.; Fox, M. A.; Marder, T. B.; Schwedler, S.; Brockhinke, A.; Stammler, H.-G.; Neumann, B. Dalton Trans. 2009, 2823.Google Scholar
  14. 14.
    (a) Weber, L.; Halama, J.; Böhling, L.; Brockhinke, A.; Chrostowska, A.; Darrigan, C.; Dargelos, A.; Stammler, H.-G.; Neumann, B. Eur. J. Inorg. Chem. 2013, 4268. (b) Weber, L.; Halama, J.; Hanke, K.; Böhling, L.; Brockhinke, A.; Stammler, H.-G.; Neumann, B.; Fox, M. A. Dalton Trans. 2014, 43, 3347.Google Scholar
  15. 15.
    (a) Marsden, J. A.; Miller, J. J.; Shirtcliff, L. D.; Haley, M. M. J. Am. Chem. Soc. 2005, 127, 2464. (b) Grabarz, A. M.; Laurent, A. D; Jędrzejewska, B.; Zakrewska, A.; Jacquemin, D.; Ośmiałowski, B. J. Org. Chem. 2016, 81, 2280.Google Scholar
  16. 16.
    (a) Weber, L.; Eickhoff, D.; Marder, T. B.; Fox, M. A.; Low, P. J.; Dwyer, A. D.; Tozer, D. J.; Schwedler, S.; Brockhinke, A.; Stammler, H.-G.; Neumann, B. Chem.–Eur. J. 2012, 18, 1369. (b) Weber, L.; Eickhoff, D.; Kahlert, J.; Böhling, L.; Brockhinke, A.; Stammler, H.-G.; Neumann, B.; Fox, M. A. Dalton Trans. 2012, 41, 10328.Google Scholar
  17. 17.
    (a) Bosdet, M. J. D.; Piers, W. E. Can. J. Chem. 2009, 87, 8. (b) Campbell, P. G.; Marwitz, A. J.; Liu, S.-Y. Angew. Chem., Int. Ed. 2012, 51, 6074. (c) Abbey, E. R.; Liu, S.-Y. Org. Biomol. Chem. 2013, 11, 2060. (d) Schäfer, M.; Schäfer, J.; Dewhurst, R. D.; Ewing, W. C.; Krahfuß, M.; Kuntze- Fechner, M. W.; Wehner, M.; Lambert, C.; Braunschweig, H. Chem.–Eur. J. 2016, 22, 8603Google Scholar
  18. 18.
    Pelter, A.; Smith, K.; Brown, H. C. Borane Reagents; Academic Press: London, 1988, p. 428.Google Scholar
  19. 19.
    Bergmann, J.; Venemalm, L. J. Org. Chem. 1992, 57, 2495.CrossRefGoogle Scholar
  20. 20.
    An, Z.; Odom, S. A.; Kelley, R. F.; Huang, C.; Zhang, X.; Barlow, S.; Padilha, L. A.; Fu, J.; Webster, S.; Hagan, D. J.; Van Stryland, E. W.; Wasielewsky, M. R.; Marder, S. R. J. Phys. Chem. A 2009, 113, 5585.CrossRefGoogle Scholar
  21. 21.
    Blackburn, B. K.; Lee, A.; Baier, M.; Kohl, B.; Olivere, A. G.; Matamaros, R.; Robarge, K. D.; Mc Dowell, R. S. J. Med. Chem. 1997, 40, 717.CrossRefGoogle Scholar
  22. 22.
    Weber, L.; Dobbert, E.; Stammler, H.-G.; Neumann, B.; Boese, R.; Bläser, D. Chem. Ber. 1997, 130, 705.CrossRefGoogle Scholar
  23. 23.
    Sheldrick, G. M. Acta Crystallogr., Sect. A: Found. Crystallogr. 2008, 64A, 112.CrossRefGoogle Scholar
  24. 24.
    Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, revision B.01; Gaussian, Inc.: Wallingford, 2009.Google Scholar
  25. 25.
    Raghavachari, K.; Binkley, J. S.; Seeger, R.; Pople, J. A. J. Chem. Phys. 1980, 72, 650.CrossRefGoogle Scholar
  26. 26.
    (a) Parr, R. G.; Yang, W. Functional Theory of Atoms and Molecules; Oxford University Press: New York, 1989. (b) Frisch, M. J.; Trucks, G. W.; Cheeseman, J. R. In Recent Development and Applications of Modern Density Functional Theory, Theoretical and Computational Chemistry; Semminario, J. M., Ed.; Elsevier: Amsterdam–Lausanne–New York–Oxford–Shannon–Tokyo, 1996, Vol. 4, p. 679. (c) Limacher, P. A.; Mikkelsen, K. V.; Lüthi, H. P. J. Chem. Phys. 2009, 130, 194114. (d) Kobayashi, R.; Amos, R. D. Chem. Phys. Lett. 2006, 420, 106. (e) Jacquemin, D.; Perpète, E. A.; Scalmani, G.; Frisch, M. J.; Kobayashi, R.; Adamo, C. J. Chem. Phys. 2007, 126, 144105.Google Scholar
  27. 27.
    (a) Becke, A. D. Phys. Rev. 1988, 38(6), 3098. (b) Becke, S. D. J. Chem. Phys. 1993, 98(7), 5648. (c) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. 1988, B37(2), 785. (d) Yanai, T.; Tew, D.; Handy, N. Chem. Phys. Lett. 2004, 393(1–3), 51.Google Scholar
  28. 28.
    (a) Joantéguy, S.; Pfister-Guillouzo, G.; Chermette, H. J. Phys. Chem. 1999, 103(18), 3505. (b) Chrostowska, A.; Miqueu, K.; Pfister-Guillouzo, G.; Briard, E.; Levillain, J.; Ripoll, J.-L. J. Mol. Spectrosc. 2001, 205(2), 323. (c) Bartnik, R.; Baylère, P.; Chrostowska, A.; Galindo, A.; Lesniak, S.; Pfister-Guillouzo, G. Eur. J. Org. Chem. 2003, (13), 2475.Google Scholar
  29. 29.
    (a) Stratmann, R. E.; Scuseria, G. E.; Frisch, M. J. J. Chem. Phys. 1998, 109(19), 8218. (b) Casida, M. E.; Jamorski, C.; Casida, K. C.; Salahub, D. R. J. Chem. Phys. 1998, 108(11), 4439. (c) Lemierre, V.; Chrostowska, A.; Dargelos, A.; Chermette, H. J. Phys. Chem. A 2005, 109(37), 8348.Google Scholar
  30. 30.
    Varetto, U. Molekel 4.3; Swiss National Supercomputing Centre: Manno (Switzerland).Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Lothar Weber
    • 1
    Email author
  • Daniel Eickhoff
    • 1
  • Anna Chrostowska
    • 2
  • Clovis Darrigan
    • 2
  • Hans-Georg Stammler
    • 1
  • Beate Neumann
    • 1
  1. 1.Fakultät für Chemie der Universität BielefeldBielefeldGermany
  2. 2.Equipe Chimie Physique, IPREM, UMR 5254Université de Pau et des Pays de l’AdourPau CedexFrance

Personalised recommendations