Advertisement

Chemistry of Heterocyclic Compounds

, Volume 51, Issue 11–12, pp 1030–1038 | Cite as

Synthesis and anticancer activity of arylazothiazoles and 1,3,4-thiadiazoles using chitosan-grafted-poly(4-vinylpyridine) as a novel copolymer basic catalyst

  • Sobhi M. Gomha
  • Sayed M. RiyadhEmail author
  • Elmahdi A. Mahmmoud
  • Mahmoud M. Elaasser
Article
A novel series of 4-substituted 5-arylazo-2-[1-(pyrrol-3-yl)ethylidenehydrazinyl]thiazoles and 5-arylazo-2-[1-(pyrrol-3-yl)ethylidenehydrazinyl]-2,3-dihydrothiazol-3-amines was prepared by cyclocondensation of α-oxohydrazonoyl halides with 1-(pyrrol-3-yl)-ethylidenethiosemicarbazide and 1-(pyrrol-3-yl)ethylidenethiocarbohydrazide, respectively. These cyclocondensation reactions were achieved by using chitosan-grafted-poly(4-vinylpyridine) as a novel basic catalyst under microwave irradiation. Furthermore, the reaction of the above mentioned thiosemicarbazide and thiocarbohydrazide with N-phenylbenzenecarbohydrazonyl chlorides (bereft of the α-oxo group) using chitosan-grafted catalyst proceeded via a similar mechanism and afforded the same 2-hydrazono-1,3,4-thiadiazoles. The structures of the newly synthesized compounds were established on the basis of spectroscopic evidences as well as by their synthesis via alternative methods. Finally, the appraisal of the newly synthesized products for their anticancer activity against a colon carcinoma cell line (HCT-116) and liver carcinoma cell line (HEPG2-1) revealed promising activity, especially 4-phenyl- and 4-(thiophen-2-yl)-substituted 1,3-thiazole derivatives.

Keywords

arylazothiazole 1,3,4-thiadiazole anticancer activity cyclocondensation 

Supplementary material

10593_2016_1815_MOESM1_ESM.pdf (1.6 mb)
ESM 1 (PDF 1608 kb)

References

  1. 1.
    Clark, J. H.; Macquarrie, D. J. Green Chemistry and Technology; Blackwell: Abingdon, 2002.CrossRefGoogle Scholar
  2. 2.
    Kunbeck, D.; Saidulu, G.; Reddy, K. R.; Diaz, D. Green Chem. 2012, 14, 378.CrossRefGoogle Scholar
  3. 3.
    Bommarius, A. S.; Riebel, B. R. Biocatalysis: Fundamentals and Applications; Wiley-VCH: Weinheim, 2004, p. 624.CrossRefGoogle Scholar
  4. 4.
    Qin, Y.; Zhao, W.; Yang, L.; Zhang, X.; Cui, Y. Chirality 2012, 24, 640.CrossRefGoogle Scholar
  5. 5.
    Watile, R. A.; Bhanage, B. M. Ind. J. Chem. 2012, 51A, 1354.Google Scholar
  6. 6.
    Al-Matar, H. M.; Khalil, K. D.; Meier, H.; Kolshorn, H.; Elnagdi, M. H. ARKIVOC 2008, (XVI), 288.Google Scholar
  7. 7.
    Gomha, S. M.; Riyadh, S. M. ARKIVOC 2009, (XI), 58.Google Scholar
  8. 8.
    Khalil, K. D.; Al-Matar, H. M.; Elnagdi, M. H. Eur. J. Chem. 2010, 1, 252.CrossRefGoogle Scholar
  9. 9.
    Guibal, E. Prog. Polym. Sci. 2005, 30, 71.CrossRefGoogle Scholar
  10. 10.
    Khalil, K. D.; Al-Matar, H. M. Molecules 2013, 18, 5288.CrossRefGoogle Scholar
  11. 11.
    Yen, M-S.; Chen, C-W. Dyes Pigments 2010, 86, 129.CrossRefGoogle Scholar
  12. 12.
    Maradiya, H. R. J. Saudi Chem. Soc. 2010, 14, 77.CrossRefGoogle Scholar
  13. 13.
    Zadafiya, S. K.; Tailor, J. H.; Malik, G. M. J. Chem. 2013, 2013, 1.CrossRefGoogle Scholar
  14. 14.
    Eberlin, M. N.; Kascheres, C. J. Org. Chem. 1988, 53, 2084.CrossRefGoogle Scholar
  15. 15.
    de Oliveira Cardoso, M. V.; de Siqueira, L. R. P.; de Silva, E. B.; Costa, L. B.; Hernandes, M. Z.; Rabello, M. M.; Ferreira, R. S.; de Cruz, L. F.; Moreira, D. R. M.; Pereira, V. R. A.; de Castro, M. C. A. B.; Bernhardt, P. V.; Leite, A. C. Eur. J. Med. Chem. 2014, 86, 48.CrossRefGoogle Scholar
  16. 16.
    Rostom, S. A. F.; Faidallah, H. M.; Radwan, M. F.; Badr, M. H. Eur. J. Med. Chem. 2014, 76, 170.CrossRefGoogle Scholar
  17. 17.
    Sayed, A. R. Tetrahedron 2012, 68, 2784.CrossRefGoogle Scholar
  18. 18.
    Hassan, A. A.; Mohamed, N. K.; Aly, A. A.; Mourad, A. F. E. Monatsh. Chem. 1997, 128, 61.CrossRefGoogle Scholar
  19. 19.
    Sayed, A. R. Tetrahedron Lett. 2010, 51, 4490.CrossRefGoogle Scholar
  20. 20.
    Hu, Y.; Li, C-Y.; Wang, X-M.; Yang, Y-H.; Zhu, H-L. Chem. Rev. 2014, 114, 5572.CrossRefGoogle Scholar
  21. 21.
    Wolkoff, P. Can. J. Chem. 1975, 53, 1333.CrossRefGoogle Scholar
  22. 22.
    Geies, A. A.; Kamal-Eldeen, A. M.; Abdelhafez, A. A.; Gaber, A. M. Phosphor, Sulfur Silicon Relat. Elem. 1991, 56, 87.CrossRefGoogle Scholar
  23. 23.
    Ranu, B. C.; Banerjee, S. Org. Lett. 2005, 7, 3049.CrossRefGoogle Scholar
  24. 24.
    Eweiss, N. F.; Osman, A. J. Heterocycl. Chem. 1980, 17, 1713.CrossRefGoogle Scholar
  25. 25.
    Shawali, A. S.; Abdelhamid, A. O. Bull. Chem. Soc. Jpn. 1976, 49, 321.CrossRefGoogle Scholar
  26. 26.
    Klančnik, A.; Piskernik, S. B.; Jeršek, B.; Možina, S. S. J. Microbiol. Methods 2010, 81, 121.CrossRefGoogle Scholar
  27. 27.
    Gangadevi, V.; Muthumary, J. Afr. J. Biotechnol. 2007, 6, 1382.Google Scholar
  28. 28.
    Mosmann, T. J. Immunol Methods 1983, 65, 55.CrossRefGoogle Scholar
  29. 29.
    Al-Salahi, R; Alswaidan, I.; Ghabbour, H. A.; Ezzeldin, E.; Elaasser, M.; Marzouk, M. Molecules 2015, 20, 5099.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Sobhi M. Gomha
    • 1
  • Sayed M. Riyadh
    • 1
    • 2
    Email author
  • Elmahdi A. Mahmmoud
    • 2
  • Mahmoud M. Elaasser
    • 3
  1. 1.Department of Chemistry, Faculty of ScienceUniversity of CairoGizaEgypt
  2. 2.Department of Chemistry, Faculty of ScienceTaibah UniversityAlmunawrahSaudi Arabia
  3. 3.Regional Center for Mycology and BiotechnologyAl-Azhar UniversityCairoEgypt

Personalised recommendations