Chemistry of Heterocyclic Compounds

, Volume 51, Issue 7, pp 672–677 | Cite as

Formation of magnetoliposomes using self-assembling 1,4-dihydropyridine derivative and maghemite γ-Fe2O3 nanoparticles

  • Oksana Petrichenko
  • Aiva Plotniece
  • Karlis Pajuste
  • Velta Ose
  • Andrejs Cēbers

This work demonstrates studies of ferromagnetic nanoparticle functionalization by a lipid-like compound, cationic pyridine amphiphile derived from 1,4-dihydropyridine, 1,1'-{[3,5-bis(dodecyloxycarbonyl)-4-phenyl-1,4-dihydropyridine-2,6-diyl]dimethanediyl}dipyridinium dibromide, and determination of optimal conditions for the production of magnetoliposomes. The following methodologies, such as sonication, spontaneous swelling, and reverse-phase evaporation, were used for the preparation of liposomes. Ferrofluid containing γ-Fe2O3 nanoparticles with a positively charged surface was used for the preparation of magnetoliposomes. The obtained soft matter objects were studied by optical microscopy, transmission electron microscopy, and dynamic light scattering techniques. The optimal conditions for the production of magnetoliposomes were found by spontaneous swelling and reverse-phase evaporation methods using ferrofluid with positively charged γ-Fe2O3 nanoparticles and cationic 1,4-dihydropyridine derivative.


cationic 1,4-dihydropyridine ferrofluid magnetoliposomes reverse-phase evaporation method spontaneous swelling method 


The support from OSMOSE program No 22497YE and INNOVABALT (REGPOT – CT-2013-316149) project (for O. Petrichenko) is gratefully acknowledged. The authors are indebted to M. Maiorov from Institute of Physics of the University of Latvia for the measurement of magnetic properties of nanoparticles and B. Skrivele from the Latvian Institute of Organic Synthesis for the registration of AFM images.


  1. 1.
    Hyvönen, Z.; Plotniece, A.; Reine, I.; Chekavichus, B.; Duburs, G.; Urtti, A. Biochim. Biophys. Acta. 2000, 1509, 451.CrossRefGoogle Scholar
  2. 2.
    Triggle, D. J. Cell. Mol. Neurobiol. 2003, 23, 293.Google Scholar
  3. 3.
    Triggle, D. J. Mini-Rev. Med. Chem. 2003, 3, 215.Google Scholar
  4. 4.
    Pajuste, K.; Hyvönen, Z.; Petrichenko, O.; Kaldre, D.; Rucins, M.; Cekavicus, B.; Ose, V.; Skrivele, B.; Gosteva, M.; Morin- Picardat, E.; Plotniece, M.; Sobolev, A.; Duburs, G.; Ruponen, M.; Plotniece, A. New J. Chem. 2013, 37, 3062.CrossRefGoogle Scholar
  5. 5.
    Yang, L.; Sun, X.; Yang, F.; Zhao, C.; Zhang, L.; Zu, Y. Food Chem. 2007, 128, 1152.CrossRefGoogle Scholar
  6. 6.
    Nie, Z.; Liu, K. J.; Chong, C. J.; Wang, L. F.; Yang, Y.; Tian, Q.; Liu, Y. Free Radical Biol. Med. 2007, 43, 1243.CrossRefGoogle Scholar
  7. 7.
    Basnet, P.; Hussain, H.; Tho, I.; Skalko-Basnet, N. J. Farm. Sci. 2012, 101, 598.Google Scholar
  8. 8.
    Varadan, V. K.; Chen, L.; Xie, J. Nanomedicine; Wiley: Hoboken, 2008, p. 152.Google Scholar
  9. 9.
    Skouras, A.; Mourtas, S.; Markoutsa, E.; De Golstein, M. C.; Wallon, C.; Sarah, C. Nanomedicine: NBM 2011, 7, 572.CrossRefGoogle Scholar
  10. 10.
    Taukulis, R.; Cēbers, A. Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 2012, 86, 061405.CrossRefGoogle Scholar
  11. 11.
    Covaliu, C. I.; Paraschiv, G.; Biris, S.-S.; Jitaru, I.; Vasile, E.; Diamandescu, L.; Cirkovic Velickovic, T.; Krstic, M.; Ionita, V.; Iovu, H.; Mateis, E. Appl. Surf. Sci. 2013, 285P, 86.CrossRefGoogle Scholar
  12. 12.
    Magro, M.; Sinigaglia, G.; Nodari, L.; Tucek, J.; Polakova, K.; Marusak, Z.; Cardillo, S.; Salviulo, G.; Russo, U.; Stevanato, R.; Zboril, R.; Vianello, F. Acta Biomater. 2012, 8, 2068.CrossRefGoogle Scholar
  13. 13.
    Gupta, A. K.; Gupta, M. Biomaterials 2005, 26, 3995.CrossRefGoogle Scholar
  14. 14.
    Dobson, J. Nat. Nanotechnol. 2008, 3, 139.CrossRefGoogle Scholar
  15. 15.
    Mazuel, F.; Reffay, M.; Du, V.; Bacri, J.-C.; Rieu, J.-P.; Wilhelm, C. Phys. Rev. Lett. 2015, 114, 098105.CrossRefGoogle Scholar
  16. 16.
    Shinkai, M. J. Biosci. Bioeng. 2002, 94, 606.CrossRefGoogle Scholar
  17. 17.
    Mahmoudi, M.; Sant, S.; Wang, B.; Laurent, S.; Sen, T. Adv. Drug Delivery Rev. 2011, 63, 24.CrossRefGoogle Scholar
  18. 18.
    Bacri, J.-C.; Cabuil, V.; Cebers, A.; Menager, C.; Perzynski, R. Europhys. Lett. 1996, 33, 235.CrossRefGoogle Scholar
  19. 19.
    Beune, G.; Dubertret, B.; Clément, O.; Vayssettes, C.; Cabuil, V.; Ménager, C. Angew. Chem., Int. Ed. 2007, 46, 5421.CrossRefGoogle Scholar
  20. 20.
    Petrichenko, O.; Erglis, K.; Cebers, A.; Plotniece, A.; Pajuste, K.; Béalle, G.; Menager, C.; Dubois, E.; Perzynski, R. Eur. Phys. J. E: Soft Matter Biol. Phys. 2013, 36, 9.CrossRefGoogle Scholar
  21. 21.
    Massart, R. C. R. Acad. Sci., Ser. C. 1980, 291, 1.Google Scholar
  22. 22.
    Bee, A.; Massart, R.; Neveu, S. JMMM 1995, 149, 6.CrossRefGoogle Scholar
  23. 23.
    Béalle, G.; Di Corato, R.; Kolosnjaj-Tabi, J.; Dupuis, V.; Clement, O.; Gazeau, F.; Wilhelm, C.; Menager, C. Langmuir 2012, 28, 11834.CrossRefGoogle Scholar
  24. 24.
    Beune, G.; Ménager, C.; Cabuil, V. J. Phys. Chem. B 2008, 112, 7424.CrossRefGoogle Scholar
  25. 25.
    Ménager, C.; Meyer, M.; Cabuil, V.; Cebers, A.; Bacri, J.-C.; Perzynski, R. Eur. Phys. J. E: Soft Matter Biol. Phys. 2002, 7, 325.Google Scholar
  26. 26.
    Sandre, O.; Ménager, C.; Prost, J.; Bacri, J.-C.; Cebers, A. Phys. Rev. E: Soft Matter Biol. Phys. 2000, 62, 3865.CrossRefGoogle Scholar
  27. 27.
    Menager, C.; Cabuil, V. Colloid Polym. Sci. 1994, 272, 1295.CrossRefGoogle Scholar
  28. 28.
  29. 29.
    Gradzielski, M. J. Phys.: Condens. Matter 2003, 15, R655.Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Oksana Petrichenko
    • 1
    • 2
  • Aiva Plotniece
    • 1
  • Karlis Pajuste
    • 1
  • Velta Ose
    • 3
  • Andrejs Cēbers
    • 2
  1. 1.Latvian Institute of Organic SynthesisRigaLatvia
  2. 2.University of LatviaRigaLatvia
  3. 3.Latvian Biomedical Research and Study CentreRigaLatvia

Personalised recommendations