Advertisement

Quantum-Chemical Analysis of the Algar–Flynn–Oyamada Reaction Mechanism

  • 502 Accesses

  • 9 Citations

This work is devoted to improving the understanding of Algar–Flynn–Oyamada reaction mechanism and the analysis of factors that affect the formation of flavonols. The calculation of thermodynamic parameters for the key reaction steps pointed to a mechanism involving chalcone epoxides as intermediates. A correlation was identified between the nucleophilicity of oxygen atom at position 2' of epoxide anions and the yields of flavonols. An increased charge at the nucleophilic center was shown to reduce the effectiveness of β-cyclization of epoxide anions.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Fig. 1

References

  1. 1.

    A. G. Perkin and A. E. Everest, Natural Organic Colouring Matters, Longmans, Green & Co., London (1918), p. 172-233.

  2. 2.

    D. W. S. Westlake, J. M. Roxburgh, and G. Talbot, Nature, 189, 510 (1961).

  3. 3.

    S. J. Formosinho and L. G. Arnaut, J. Photochem. Photobiol., A, 75, 21 (1993).

  4. 4.

    A. Kurzwernhart, W. Kandioller, C. Bartel, S. Bächler, R. Trondl, G. Mühlgassner, M. A. Jakupec, V. B. Arion, D. Marko, B. K. Keppler, and C. G. Hartinger, Chem. Commun., 4839 (2012).

  5. 5.

    I. Torssell and B. G. Kurt, Acta Chem. Scand., 42b, 303 (1988)

  6. 6.

    S. R. Deshpande, H. H. Mathur, and G. K. Trivedi, Synthesis, 835 (1983).

  7. 7.

    W. Adam, D. Golsch, L. Hadjiarapoglou, and T. Patonay, J. Org. Chem., 56, 7292 (1991).

  8. 8.

    S. Venkateswarlu, Proc. – Indian Acad. Sci., Sect. A, 26, 189 (1947)

  9. 9.

    J. H. Looker, J. H. McMechan, and J. Woodson Mader, J. Org. Chem., 43, 2344 (1978).

  10. 10.

    A. Fougerousse, E. Gonzalez, and R. Brouillard, J. Org. Chem., 65, 583 (2000).

  11. 11.

    J. Zhang, X. Fu, N. Yang, and Q. Wang, Sci. World J., 1 (2013).

  12. 12.

    G. D. Hatnapure, A. P. Keche, A. H. Rodge, R. H. Tale, S. S. Birajdar, M. J. Pawar, and V. M. Kamble, Med. Chem. Res., 23, 461 (2014).

  13. 13.

    T. Oyamada, J. Chem. Soc. Jpn., 55, 1256 (1934).

  14. 14.

    A. A. Nada, M. F. Zayed, N. Khir El Din, M. M. T. El-Saidi, and E. Hefny, Synth. Commun., 32, 1293 (2002).

  15. 15.

    C. Corsano, G. Proietti, E. Castagnino, and P. Strappaghetti, Farmaco, Ed. Sci., 38, 265 (1983).

  16. 16.

    T. A. Geissman and D. K. Fukushima, J. Am. Chem. Soc., 70, 1686 (1948).

  17. 17.

    T. Patonay, A. Levai, C. Nemes, T. Timar, G. Toth, and W. Adam, J. Org. Chem., 61, 5375 (1996).

  18. 18.

    C. J. Adams and L. Main, Tetrahedron, 48, 9929 (1992).

  19. 19.

    M. Bennett, A. J. Burke, and W. I. O'Sullivan, Tetrahedron, 52, 7163 (1996).

  20. 20.

    F. M. Dean and V. Podimuang, J. Chem. Soc., 3978 (1965).

  21. 21.

    D. Ferreira, E. V. Brandt, F. du R. Volsteedt, and D. G. Roux, J. Chem. Soc., Perkin Trans. 1, 1437 (1975).

  22. 22.

    T. Puzyn, N. Suzuki, M. Haranczyk, and J. Rak, J. Chem. Inf. Model., 48, 1174 (2008).

  23. 23.

    D. Amić and B. Lucić, Bioorg. Med. Chem., 18, 28 (2010).

  24. 24.

    Z. Marković, D. Milenković, J. Ðorović, J. M. Dimitrić Marković, V. Stepanić, B. Lučić, and D. Amić, Food Chem., 134, 1754 (2012).

  25. 25.

    A. da Silva Gonçalves, T. C. C. França, J. D. Figueroa-Villar, and P. G. Pascutti, J. Braz. Chem. Soc., 21, 179 (2010).

  26. 26.

    J. J. P. Stewart, J. Mol. Model., 13, 1173 (2007).

  27. 27.

    P. Chou, C.-H. Huang, S.-C. Pu, Y.-M. Cheng, Y.-H. Liu, Y. Wang, and C.-T. Chen, J. Phys. Chem. A, 108, 6452 (2004).

  28. 28.

    Z. Li, G. Ngojeh, P. DeWitt, Z. Zheng, M. Chen, B. Lainhart, V. Li, and P. Felpo, Tetrahedron Lett., 49, 7243 (2008).

  29. 29.

    T. A. Dias, C. L. Duarte, C. F. Lima, M. F. Proença, and C. Pereira-Wilson, Europ. J. Med. Chem., 65, 500 (2013).

  30. 30.

    K. Juvale, V. F. S. Pape, and M. Wiese, Bioorg. Med. Chem., 20, 346 (2012).

  31. 31.

    T. Teshima, M. Takeishi, and T. Arai, New J. Chem., 33, 1393 (2009).

  32. 32.

    H. Kagawa, A. Shigematsu, S. Ohta, and Y. Harigaya, Chem. Pharm. Bull., 53, 547 (2005).

  33. 33.

    V. V. Moroz, A. G. Chalyi, I. E. Serdiuk, A. D. Roshal, B. Zadykowicz, V. G. Pivovarenko, A. Wróblewska, and J. Błażejowski, J. Phys. Chem. A, 117, 9156 (2013).

  34. 34.

    http://openmopac.net/MOPAC2009.html.

  35. 35.

    G. B. Rocha, R. O. Freire, A. M. Simas, and J. J. P. Stewart, J. Comput. Chem., 27, 1101 (2006).

  36. 36.

    A. Klamt and G. Schüümann, J. Chem. Soc., Perkin Trans. 2, 799 (1993)

Download references

Author information

Correspondence to J. Błażejowski.

Additional information

Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 3, pp. 431-439, March, 2014.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Serdiuk, I.E., Roshal, A.D. & Błażejowski, J. Quantum-Chemical Analysis of the Algar–Flynn–Oyamada Reaction Mechanism. Chem Heterocycl Comp 50, 396–403 (2014). https://doi.org/10.1007/s10593-014-1487-2

Download citation

Keywords

  • chalcone
  • epoxychalcone
  • flavonol
  • Algar-Flynn-Oyamada reaction
  • reaction mechanism