Chemistry of Heterocyclic Compounds

, Volume 49, Issue 6, pp 902–908 | Cite as

Synthesis of 4-aminoquinolines by aerobic oxidative palladium-catalyzed double C–H activation and isocyanide insertion

  • T. Vlaar
  • B. U. W. Maes
  • E. Ruijter
  • R. V. A. Orru
Article

An unprecedented aerobic oxidative Pd-catalyzed imidoylative coupling of two C–H fragments furnishing medicinally valuable 4-aminoquinolines is reported. Optimization studies are described and several analogs were successfully prepared.

Keywords

isocyanides palladium quinolines catalysis C–H bond activation imidoylative cross coupling 

References

  1. 1.
    I. Ugi, Isonitrile Chemistry, Academic Press, New York (1971).Google Scholar
  2. 2.
    A. Dömling and I. Ugi, Angew. Chem., Int. Ed., 39, 3168 (2000).Google Scholar
  3. 3.
    A. Dömling, Chem. Rev., 106, 17 (2006) CrossRefGoogle Scholar
  4. 4.
    A. V. Lygin and A. de Meijere, Angew. Chem., Int. Ed., 49, 9094 (2010).CrossRefGoogle Scholar
  5. 5.
    A. V. Gulevich, A. G. Zhdanko, R. V. A. Orru, and V. G. Nenajdenko, Chem. Rev., 110, 5235 (2010).CrossRefGoogle Scholar
  6. 6.
    V. G. Nenajdenko, Isocyanide Chemistry, Wiley-VCH, Weinheim (2012).Google Scholar
  7. 7.
    C. G. Saluste, R. J. Whitby, and M. Furber, Angew. Chem., Int. Ed., 39, 4156 (2000).CrossRefGoogle Scholar
  8. 8.
    H. Jiang, B. Liu, Y. Li, A. Wang, and H. Huang, Org. Lett., 13, 1028 (2011).CrossRefGoogle Scholar
  9. 9.
    F. Zhou, K. Ding, and Q. Cai, Chem.-Eur. J., 17, 12268 (2011).CrossRefGoogle Scholar
  10. 10.
    P. J. Boissarie, Z. E. Hamilton, S. Lang, J. A. Murphy, and C. J. Suckling, Org. Lett., 13, 6256 (2011).CrossRefGoogle Scholar
  11. 11.
    G. van Baelen, S. Kuijer, L. Rýček, S. Sergeyev, E. Janssen, F. J. J. de Kanter, B. U. W. Maes, E. Ruijter, and R. V. A. Orru, Chem.-Eur. J., 17, 15039 (2011).CrossRefGoogle Scholar
  12. 12.
    G. Qiu, G. Liu, S. Pu, and J. Wu, Chem. Commun., 48, 2903 (2012).CrossRefGoogle Scholar
  13. 13.
    Y. Li, J. Zhao, H. Chen, B. Liu, and H. Jiang, Chem. Commun., 48, 3545 (2012).CrossRefGoogle Scholar
  14. 14.
    V. Tyagi, S. Khan, A. Giri, H. M. Gauniyal, B. Sridhar, and P. M. S. Chauhan, Org. Lett., 14, 3126 (2012).CrossRefGoogle Scholar
  15. 15.
    B. Liu, Y. Li, H. Jiang, M. Yin, and H. Huang, Adv. Synth. Catal., 354, 2288 (2012).CrossRefGoogle Scholar
  16. 16.
    T. Vlaar, E. Ruijter, A. Znabet, E. Janssen, F. J. J. de Kanter, B. U. W. Maes, and R. V. A. Orru, Org. Lett., 13, 6496 (2011).CrossRefGoogle Scholar
  17. 17.
    B. Liu, Y. Li, M. Yin, W. Wu, and H. Jiang, Chem. Commun., 48, 11446 (2012).CrossRefGoogle Scholar
  18. 18.
    X.-D. Fei, Z.-Y. Ge, T. Tang, Y.-M. Zhu, and S.-J. Ji, J. Org. Chem., 77, 10321 (2012).CrossRefGoogle Scholar
  19. 19.
    T. Vlaar, R. C. Cioc, P. Mampuys, B. U. W. Maes, R. V. A. Orru, and E. Ruijter, Angew. Chem., Int. Ed., 51, 13058 (2012).CrossRefGoogle Scholar
  20. 20.
    L. Ackermann, R. Vicente, and A. R. Kapdi, Angew. Chem., Int. Ed., 48, 9792 (2009).CrossRefGoogle Scholar
  21. 21.
    X. Chen, K. M. Engle, D.-H. Wang, and J.-Q. Yu, Angew. Chem., Int. Ed., 48, 5094 (2009).CrossRefGoogle Scholar
  22. 22.
    J. A. Ashenhurst, Chem. Soc. Rev., 39, 540 (2010).CrossRefGoogle Scholar
  23. 23.
    T. W. Lyons and M. S. Sanford, Chem. Rev., 110, 1147 (2010).CrossRefGoogle Scholar
  24. 24.
    Y. Wang, H. Wang, and J. Peng, Q. Zhu, Org. Lett., 13, 4604 (2011).CrossRefGoogle Scholar
  25. 25.
    Y. Wang and Q. Zhu, Adv. Synth. Catal., 354, 1902 (2012).CrossRefGoogle Scholar
  26. 26.
    D. P. Curran and W. Du, Org. Lett., 4, 3215 (2002).CrossRefGoogle Scholar
  27. 27.
    M. Tobisu, S. Imoto, S. Ito, and N. Chatani, J. Org. Chem., 75, 4835 (2010).CrossRefGoogle Scholar
  28. 28.
    T. Nanjo, C. Tsukano, and Y. Takemoto, Org. Lett., 14, 4270 (2012).CrossRefGoogle Scholar
  29. 29.
    T. Vlaar, E. Ruijter and R. V. A. Orru, Adv. Synth. Catal., 353, 809 (2011).CrossRefGoogle Scholar
  30. 30.
    S. Würtz, S. Rakshit, J. J. Neumann, T. Dröge, and F. Glorius, Angew. Chem., Int. Ed., 47, 7230 (2008).CrossRefGoogle Scholar
  31. 31.
    J. J. Neumann, S. Rakshit, T. Dröge, S. Würtz, and F. Glorius, Chem.-Eur. J., 17, 7298 (2011).CrossRefGoogle Scholar
  32. 32.
    Y. Wei, I. Deb, and N. Yoshikai, J. Am. Chem. Soc., 134, 9098 (2012).CrossRefGoogle Scholar
  33. 33.
    N. Mršić, A. J. Minnaard, B. L. Feringa, and J. G. de Vries, J. Am. Chem. Soc., 131, 8358 (2009).CrossRefGoogle Scholar
  34. 34.
    C. Moessner and C. Bolm, Angew. Chem., Int. Ed., 44, 7564 (2005).CrossRefGoogle Scholar
  35. 35.
    T. Imamoto, N. Iwadate, and K. Yoshida, Org. Lett., 8, 2289 (2006).CrossRefGoogle Scholar
  36. 36.
    K. Kutlescha, G. T. Venkanna, and R. Kempe, Chem. Commun., 47, 4183 (2011).CrossRefGoogle Scholar
  37. 37.
    A. Leyva and A. Corma, Adv. Synth. Catal., 351, 2876 (2009).CrossRefGoogle Scholar
  38. 38.
    A. V. Malkov, S. Stončius, K. Vranková, M. Arndt, and P. Kočovský, Chem.-Eur. J., 14, 8082 (2008).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • T. Vlaar
    • 1
  • B. U. W. Maes
    • 2
  • E. Ruijter
    • 1
  • R. V. A. Orru
    • 1
  1. 1.Department of Chemistry & Pharmaceutical Sciences and Amsterdam Institute for Molecules, Medicines and Systems (AIMMS)VU University AmsterdamAmsterdamThe Netherlands
  2. 2.Organic Synthesis, Department of ChemistryUniversity of AntwerpAntwerpBelgium

Personalised recommendations