Chemistry of Heterocyclic Compounds

, Volume 49, Issue 1, pp 152–176

[1,7]-Electrocyclization reactions in the synthesis of azepine derivatives

Article

The review is devoted to the synthesis of azepine structures by [1,7]-electrocyclization reactions of unsaturated azomethine ylides and azatriene anions.

Keywords

azatriene systems azepines azomethine ylides metallation electrocyclization 

References

  1. 1.
    R. K. Smalley, in: A. R. Katritzky and C. W. Rees (editors), Comprehensive Heterocyclic Chemistry, Vol. 7, Elsevier, Oxford (1984), p. 491.CrossRefGoogle Scholar
  2. 2.
    D. J. le Count, in: A. R. Katritzky, C. W. Rees, and E. F. V. Scriven (editors), Comprehensive Heterocyclic Chemistry II, Vol. 9, Elsevier, Oxford (1996), p. 1.CrossRefGoogle Scholar
  3. 3.
    J. B. Bremner and S. Samosorn, in: A. R. Katritzky, C. A. Ramsden, E. F. V. Scriven, and R. J. K. Taylor (editors), Comprehensive Heterocyclic Chemistry III, Vol. 13, Elsevier, Amsterdam (2008), p. 1.CrossRefGoogle Scholar
  4. 4.
    G. R. Proctor and J. Redpath, Chemistry of Heterocyclic Compounds, Vol. 56, Wiley, Chichester, N. Y. (1996), 619 рр.Google Scholar
  5. 5.
    D. L. Riley and W. A. L. van Otterlo, in: K. C. Majumdar and S. K. Chattopadhyay (editors), Heterocycles in Natural Product Synthesis, Wiley-VCH, Weinheim (2011), p. 537.Google Scholar
  6. 6.
    G. Fischer, Adv. Heterocycl. Chem., 103, 61 (2011).CrossRefGoogle Scholar
  7. 7.
    J. B. Bremner, Prog. Heterocycl. Chem., 16, 431 (2004).CrossRefGoogle Scholar
  8. 8.
    J. B. Bremner, Prog. Heterocycl. Chem., 17, 389 (2005).CrossRefGoogle Scholar
  9. 9.
    J. J. Vaquero, A. M. Cuadro, and B. Herradon, Mod. Heterocycl. Chem., 4, 1865 (2011).CrossRefGoogle Scholar
  10. 10.
    M. D. Surman and R. H. Hutchings, Sci. Synth., 17, 749 (2004).Google Scholar
  11. 11.
    L. J. Kricka and A. Ledwith, Chem. Rev., 74, 101 (1974).CrossRefGoogle Scholar
  12. 12.
    J. F. W. Keana, A. P. Guzikowski, D. F. Nogales, and S. X. Cai, US Pat. Appl. 5708168.Google Scholar
  13. 13.
    S. M. N. Efange, D. C. Mash, A. B. Khare, and Q. Ouyang, J. Med. Chem., 41, 4486 (1998).CrossRefGoogle Scholar
  14. 14.
    H. S. Lotsof, US Pat. Appl. 4499096.Google Scholar
  15. 15.
    H. S. Lotsof, US Pat. Appl. 4587243.Google Scholar
  16. 16.
    C. Schultz, A. Link, M. Leost, D. W. Zaharevitz, R. Gussio, E. A. Sausville, L. Meijer, and C. Kunick, J. Med. Chem., 42, 2909 (1999).CrossRefGoogle Scholar
  17. 17.
    C. B. Cooper, J. P. Lyssikatos, D. W. Mann, and S. J. Hecker, EP Pat. Appl. 825186.Google Scholar
  18. 18.
    G. A. Doherty, T. C. Eary, R. D. Groneberg, and Z. Jones, WO Pat. Appl. 024612.Google Scholar
  19. 19.
    R. A. Pilli and M. C. F. de Oliveira, Nat. Prod. Rep., 17, 117 (2000).CrossRefGoogle Scholar
  20. 20.
    A. C. de Bragança, Z. P. Moyses, and A. J. Magaldi, Nephrol., Dial., Transplant., 25, 3840 (2010).CrossRefGoogle Scholar
  21. 21.
    V. Gardette, S. Andrieu, M. Lapeyre-Mestre, N. Coley, C. Cantet, P.-J. Ousset, A. Grand, J.-L. Monstastruc, and B. Vellas, CNS Drugs, 24, 431 (2010).CrossRefGoogle Scholar
  22. 22.
    P. C. Balaure, I. Costea, F. Iordache, C. Drăghici, and C. Enache, Rev. Roum. Chim., 54, 935 (2009).Google Scholar
  23. 23.
    C. García, R. Oyola, L. Piñero, D. Hernández, and R. Arce, J. Phys. Chem. B, 112, 168 (2008).CrossRefGoogle Scholar
  24. 24.
    M. S. Alam, G. Ghosh, and Kabir-ud-Din, J. Phys. Chem. B, 112, 12962 (2008).Google Scholar
  25. 25.
    R. J. Knapp, R. Goldenberg, C. Shuck, A. Cecil, J. Watkins, C. Miller, G. Crites, and E. Malatynska, Eur. J. Pharmacol., 440, 27 (2002).CrossRefGoogle Scholar
  26. 26.
    M. Inghilleri, A. Conte, V. Frasca, A. Curra', F. Gilio, M. Manfredi, and A. Berardelli, Exp. Brain Res., 154, 488 (2004).CrossRefGoogle Scholar
  27. 27.
    M. S. Eison and P. Krogsgaard-Larsen, US Pat. Appl. 4859666.Google Scholar
  28. 28.
    S. Leucht, W. Kissling, J. McGrath, and P. White, Cochrane Database Syst. Rev., 3, 1 (2007).Google Scholar
  29. 29.
    Y. Ma, S. Nam, R. Jove, K. Yakushijin, and D. A. Horne, Bioorg. Med. Chem. Lett., 20, 83 (2010).CrossRefGoogle Scholar
  30. 30.
    H. Li, Y. Liu, Q. Liu, W. Hu, and G.-C. Zhou, Synthesis, 4068 (2010).Google Scholar
  31. 31.
    Z. Thale, F. R. Kinder, K. W. Bair, J. Bontempo, A. M. Czuchta, R. W. Versace, P. E. Phillips, M. L. Sanders, S. Wattanasin, and P. Crews, J. Org. Chem., 66, 1733 (2001).CrossRefGoogle Scholar
  32. 32.
    F. R. Kinder, R. W. Versace, K. W. Bair, J. M. Bontempo, D. Cesarz, S. Chen, P. Crews, A. M. Czuchta, C. T. Jagoe, Y. Mou, R. Nemzek, P. E. Phillips, L. D. Tran, R. M. Wang, S. Weltchek, and S. Zabludoff, J. Med. Chem., 44, 3692 (2001).CrossRefGoogle Scholar
  33. 33.
    A. Rosowsky, H. Fu, D. C. M. Chan, and S. F. Queener, J. Med. Chem., 47, 2475 (2004).CrossRefGoogle Scholar
  34. 34.
    R. F. Freitas and S. E. Galembeck, Chem. Phys. Lett., 423, 131 (2006).CrossRefGoogle Scholar
  35. 35.
    O. Levy, M. Erez, D. Varon, and E. Keinan, Bioorg. Med. Chem. Lett., 11, 2921 (2001).CrossRefGoogle Scholar
  36. 36.
    I. A. Morkan, J. Organomet. Chem., 651, 132 (2002).CrossRefGoogle Scholar
  37. 37.
    J. H. Rigby and F. C. Pigge, J. Org. Chem., 60, 7392 (1996).CrossRefGoogle Scholar
  38. 38.
    Y. Kubota, K. Satake, H. Okamoto, and M. Kimura, Org. Lett., 7, 5215 (2005).CrossRefGoogle Scholar
  39. 39.
    C. E. J. Cordonier, K. Satake, M. Atarashi, Y. Kawamoto, H. Okamoto, and M. Kimura, J. Org. Chem., 70, 3425 (2005).CrossRefGoogle Scholar
  40. 40.
    N. Tolle, U. Dunkel, L. Oehninger, I. Ott, L. Preu, T. Haase, S. Behrends, P. G. Jones, F. Totzke, C. Schächtele, M. H. G. Kubbutat, and C. Kunick, Synthesis, 2848 (2011).Google Scholar
  41. 41.
    M. Decker and J. Lehmann, Arch. Pharm. Pharm. Med. Chem., 336, 466 (2003).CrossRefGoogle Scholar
  42. 42.
    S. J. Yoon, Y. K. Kang, and D. Y. Kim, Synlett, 420 (2011).Google Scholar
  43. 43.
    V. Bisai and V. K. Singh, Synlett, 481 (2011).Google Scholar
  44. 44.
    R. Novikov, G. Bernardinelli, and J. Lacoura, Adv. Synth. Catal., 350, 1113 (2008).CrossRefGoogle Scholar
  45. 45.
    D. Hamprecht, J. Josten, and W. Steglich, Tetrahedron, 52, 10883 (1996).CrossRefGoogle Scholar
  46. 46.
    I. G. Stará, I. Starý, and J. Závada, Tetrahedron: Asymmetry, 3, 1365 (1992).CrossRefGoogle Scholar
  47. 47.
    R. Koch, B. Wiedel, and C. Wentrup, J. Chem. Soc., Perkin Trans. 2, 1851 (1997).Google Scholar
  48. 48.
    M. Z. Kassaee, S. Arshadi, B. N. Haerizade, and E. Vessally, J. Mol. Struct.: THEOCHEM, 731, 29 (2005).CrossRefGoogle Scholar
  49. 49.
    R. A. Odum and B. Schmall, J. Chem. Research (S), 276 (1997).Google Scholar
  50. 50.
    K. Satake, S. Takami, Y. Tawada, and M. Kimura, Chem. Commun., 1382 (2001).Google Scholar
  51. 51.
    K. Satake, Y. Tawada, H. Okamoto, and M. Kimura, J. Chem. Soc., Perkin Trans. 1, 2015 (1997).Google Scholar
  52. 52.
    U. Göckel, U. Hartmannsgruber, A. Steigel, and J. Sauer, Tetrahedron Lett., 21, 599 (1980).CrossRefGoogle Scholar
  53. 53.
    Y. Kubota, K. Satake, H. Okamoto, and M. Kimura, Org. Lett., 8, 5469 (2006).CrossRefGoogle Scholar
  54. 54.
    C. E. J. Cordonier, K. Satake, H. Okamoto, and M. Kimura, Eur. J. Org. Chem., 3803 (2006).Google Scholar
  55. 55.
    N. A. Nedolya, L. L. Dmitrieva, O. A. Tarasova, N. I. Shlyakhtina, A. I. Albanov, L. V. Klyba, and I. A. Ushakov, in: Fourth International Conference of Young Scientists on Organic Chemistry "Modern Trends in Organic Synthesis and Problems of Chemical Education" [in Russian], (InterCOS-2005), St. Petersburg (2005), p. 198.Google Scholar
  56. 56.
    N. A. Nedolya, L. L. Dmitrieva, A. I. Albanov, L. V. Klyba, O. A. Tarasova, and I. A. Ushakov, Zh. Org. Khim., 42, 477 (2006). [Russ. J. Org. Chem., 42, 465 (2006).]Google Scholar
  57. 57.
    N. A. Nedolya, O. A. Tarasova, A. I. Albanov, and L. V. Klyba, in: International Conference on Organic Chemistry "Organic Chemistry from Butlerov and Beilstein to the Present: Dedicated to the 145th Anniversary of the Theory of Organic Compound Structure of A. M. Butlerov and the 100th Anniversary in Memory of F. Beilstein" [in Russian], St. Petersburg (2006), p. 316.Google Scholar
  58. 58.
    N. A. Nedolya, O. A. Tarasova, O. G. Volostnykh, A. I. Albanov, and B. A. Trofimov, J. Organomet. Chem., 696, 3359 (2011).CrossRefGoogle Scholar
  59. 59.
    N. A. Nedolya, O. A. Tarasova, O. G. Volostnykh, A. I. Albanov, and B. A. Trofimov, Khim. Geterotsikl. Soedin., 1718 (2011). [Chem. Heterocycl. Compd., 47, 1430 (2012).]Google Scholar
  60. 60.
    N. A. Nedolya, O. G. Volostnykh, O. A. Tarasova, G. V. Dmitrieva, L. Brandsma, and B. A. Trofimov, in: International Conference on Organic Chemistry "Chemistry of Compounds with Multiple Carbon–Carbon Bonds" [in Russian], St. Petersburg (2008), p. 131.Google Scholar
  61. 61.
    N. A. Nedolya, O. A. Tarasova, A. I. Albanov, O. G. Volostnykh, L. Brandsma, and B. A. Trofimov, Mendeleev Commun., 18, 164 (2008).CrossRefGoogle Scholar
  62. 62.
    N. A. Nedolya, O. A. Tarasova, L. L. Dmitrieva, and N. I. Shlyakhtina, in: Abstracts of International Conference on Chemistry of Heterocyclic Compounds, Dedicated to the 90th Anniversary of the Birth of Prof. A. N. Kost [in Russian], Moscow (2005), p. 253.Google Scholar
  63. 63.
    N. A. Nedolya, O. A. Tarasova, A. I. Albanov, L. V. Klyba, and B. A. Trofimov, Zh. Obshch. Khim., 79, 868 (2009). [Russ. J. Gen. Chem., 79, 1041 (2009).]Google Scholar
  64. 64.
    N. A. Nedolya, O. A. Tarasova, O. G. Volostnykh, A. I. Albanov, L. V. Klyba, and B. A. Trofimov, Synthesis, 2192 (2011).Google Scholar
  65. 65.
    N. A. Nedolya, O. A. Tarasova, O. G. Volostnykh, and A. I. Albanov, Khim. Geterotsikl. Soedin., 1380 (2008). [Chem. Heterocycl. Compd., 44, 1113 (2008).]Google Scholar
  66. 66.
    N. A. Nedolya, O. G. Volostnykh, O. A. Tarasova, A. I. Albanov, and B. A. Trofimov, Izv. Akad. Nauk, Ser. Khim., 2565 (2011).Google Scholar
  67. 67.
    O. G. Volostnykh, Thesis for Cand. Chem. Sci. [in Russian], Irkutsk (2011).Google Scholar
  68. 68.
    N. A. Nedolya, L. L. Dmitrieva, O. A. Tarasova, N. I. Shlyakhtina, A. I. Albanov, and L. V. Klyba, in: VIII Youth Scientific School Conference on Organic Chemistry [in Russian], (2005), p. 266.Google Scholar
  69. 69.
    O. G. Volostnykh, N. A. Nedolya, O. A. Tarasova, O. N. Kazheva, A. N. Chekhlov, O. A. Dyachenko, A. I. Albanov, V. A. Shagun, and B. A. Trofimov, in: International Conference on Chemistry "Principal Trends in the Development of Chemistry at the Beginning of the 21st Century", Dedicated to the 175th Anniversary of the Birth of D. I. Mendeleev and the 80th Anniversary of the Creation of the Chemical Faculty of St. Petersburg University [in Russian], St. Petersburg (2009), p. 341.Google Scholar
  70. 70.
    V. A. Shagun, N. A. Nedolya, O. A. Tarasova, O. G. Volostnykh, O. N. Kazheva, A. N. Chekhlov, G. G. Aleksandrov, and O. A. Dyachenko, Zh. Org. Khim., 46, 1835 (2010). [Russ. J. Org. Chem., 46, 1848 (2010).]Google Scholar
  71. 71.
    W. Klop and L. Brandsma, J. Chem. Soc. Chem. Commun., 988 (1983).Google Scholar
  72. 72.
    H. McNab, L. C. Monahan, and T. Gray, J. Chem. Soc. Chem. Commun., 140 (1987).Google Scholar
  73. 73.
    J.-M. Fang, C.-C. Yang, and Y.-W. Wang, J. Org. Chem., 54, 481 (1989).CrossRefGoogle Scholar
  74. 74.
    Y. Tan, T. Hartmann, V. Huch, H. Dürr, P. Valat, V. Wintgens, and J. Kossanyi, J. Org. Chem., 66, 1130 (2001).CrossRefGoogle Scholar
  75. 75.
    J.-F. Eckert, C. Bourgogne, and J.-F. Nierengarten, Chem. Commun., 712 (2002).Google Scholar
  76. 76.
    M. Nyerges, J. Toth, and P. W. Groundwater, Synlett, 1269 (2008).Google Scholar
  77. 77.
    A. Arany, P. W. Groundwater, and M. Nyerges, Tetrahedron Lett., 39, 3267 (1998).CrossRefGoogle Scholar
  78. 78.
    A. Arany, D. Bendell, P. W. Groundwater, I. Garnett, and M. Nyerges, J. Chem. Soc., Perkin Trans. 1, 2605 (1999).Google Scholar
  79. 79.
    T. Novak, Z. Mucsi, B. Balázs, L. Keresztély, G. Blaskó, and M. Nyerges, Synlett, 2411 (2010).Google Scholar
  80. 80.
    M. Nyerges, Á. Pintér, A. Virányi, I. Bitter, and L. Tőke, Tetrahedron Lett., 46, 377 (2005).CrossRefGoogle Scholar
  81. 81.
    M. Nyerges, A. Virányi, Á. Pintér, and L. Tőke, Tetrahedron Lett., 44, 793 (2003).CrossRefGoogle Scholar
  82. 82.
    J. Toth, A. Dancso, G. Blasko, L. Tőke, P. W. Groundwater, and M. Nyerges, Tetrahedron, 62, 5725 (2006).CrossRefGoogle Scholar
  83. 83.
    W. Maier, W. Eberbach, and H. Fritz, Helv. Chim. Acta, 74, 1095 (1991).CrossRefGoogle Scholar
  84. 84.
    K. Marx and W. Eberbach, Tetrahedron, 53, 14687 (1997).CrossRefGoogle Scholar
  85. 85.
    K. Marx and W. Eberbach, Chem.-Eur. J., 6, 2063 (2000).CrossRefGoogle Scholar
  86. 86.
    K. Knobloch and W. Eberbach, Eur. J. Org. Chem., 2054 (2002).Google Scholar
  87. 87.
    W. Friebolin and W. Eberbach, Tetrahedron, 57, 4349 (2001).CrossRefGoogle Scholar
  88. 88.
    W. Friebolin and W. Eberbach, Helv. Chim. Acta, 84, 3822 (2001).CrossRefGoogle Scholar
  89. 89.
    Y. Kuroki, R. Akao, T. Inazumi, and M. Noguchi, Tetrahedron, 50, 1063 (1994).CrossRefGoogle Scholar
  90. 90.
    M. Noguchi, Yuki Gosei Kagaku Kyokaishi, 55, 725 (1997).CrossRefGoogle Scholar
  91. 91.
    M. Noguchi, R. Matsushita, S. Takamura, T. Uchida, A. Kakehi, M. Shiro, and H. Yamamoto, Tetrahedron Lett., 41, 8489 (2000).CrossRefGoogle Scholar
  92. 92.
    M. Noguchi, M. Shirai, K. Nakashima, I. Arai, A. Nishida, H. Yamamoto, and A. Kakehi, Tetrahedron, 59, 4581 (2003).CrossRefGoogle Scholar
  93. 93.
    M. Noguchi, H. Yamada, S. Takamura, T. Uchida, M. Hironaka, A. Kakehi, and H. Yamamoto, Eur. J. Org. Chem., 1489 (2000).Google Scholar
  94. 94.
    M. Noguchi, T. Mizukoshi, and A. Kakehi, Tetrahedron, 52, 13081 (1996).CrossRefGoogle Scholar
  95. 95.
    M. Noguchi, T. Mizukoshi, S. Nakagawa, and A. Kakehi, Tetrahedron, 52, 13111 (1996).CrossRefGoogle Scholar
  96. 96.
    M. Noguchi, H. Yamada, S. Takamura, K. Okada, A. Kakehi, and H. Yamamoto, Tetrahedron, 56, 1299 (2000).CrossRefGoogle Scholar
  97. 97.
    M. Noguchi, T. Mizukoshi, T. Uchida, and Y. Kuroki, Tetrahedron, 52, 13097 (1996).CrossRefGoogle Scholar
  98. 98.
    T. Mayer and G. Maas, Tetrahedron Lett., 33, 205 (1992).CrossRefGoogle Scholar
  99. 99.
    G. Maas, B. Manz, T. Mayer, and U. Werz, Tetrahedron, 55, 1309 (1999).CrossRefGoogle Scholar
  100. 100.
    R. Reinhard, J. Schlegel, and G. Maas, Tetrahedron, 58, 10329 (2002).CrossRefGoogle Scholar
  101. 101.
    M. Reisser and G. Maas, J. Org. Chem., 69, 4913 (2004).CrossRefGoogle Scholar
  102. 102.
    R. Reinhard, M. Glaser, R. Neumann, and G. Maas, J. Org. Chem., 62, 7744 (1997).CrossRefGoogle Scholar
  103. 103.
    M. P. Doyle, W. Hu, and D. J. Timmons, Org. Lett., 3, 3741 (2001).CrossRefGoogle Scholar
  104. 104.
    G. Zecchi, Synthesis, 181 (1991).Google Scholar
  105. 105.
    C. Najera and J. M. Sansano, Curr. Org. Chem., 7, 1105 (2003).CrossRefGoogle Scholar
  106. 106.
    T. M. V. D. Pinho e Melo, Eur. J. Org. Chem., 2873 (2006).Google Scholar
  107. 107.
    O. Anaç and F. Ş. Güngör, Tetrahedron, 66, 5931 (2010).CrossRefGoogle Scholar
  108. 108.
    J. Jacobs, E. Van Hende, S. Claessens, and N. De Kimpe, Curr. Org. Chem., 15, 1340 (2011).CrossRefGoogle Scholar
  109. 109.
    S. Klötgen and E.-U. Würthwein, Tetrahedron Lett., 36, 7065 (1995).CrossRefGoogle Scholar
  110. 110.
    S. Klötgen, R. Fröhlich, and E.-U. Würthwein, Tetrahedron, 52, 14801 (1996).CrossRefGoogle Scholar
  111. 111.
    M. Sajitz, R. Fröhlich, K. Salorinne, and E.-U. Würthwein, Synthesis, 2183 (2006).Google Scholar
  112. 112.
    M. Sajitz, R. Fröhlich, and E.-U. Würthwein, Eur. J. Org. Chem., 2342 (2009).Google Scholar
  113. 113.
    K. Gerdes, P. Sagar, R. Fröhlich, B. Wibbeling, and E.-U. Würthwein, Eur. J. Org. Chem., 3465 (2004).Google Scholar
  114. 114.
    V. Lyaskovskyy, R. Fröhlich, and E.-U. Würthwein, Chem.-Eur. J., 13, 3113 (2007).CrossRefGoogle Scholar
  115. 115.
    V. Lyaskovskyy, K. Bergander, R. Frö1hlich, and E.-U. Würthwein, Org. Lett., 9, 1049 (2007).CrossRefGoogle Scholar
  116. 116.
    N. A. Nedolya, Novel Chemistry Based on Isothiocyanates and Polar Organometallics, Thesis Utrecht University, Utrecht (1999).Google Scholar
  117. 117.
    L. Brandsma, N. A. Nedolya, O. A. Tarasova, and B. A. Trofimov, Khim. Geterotsikl. Soedin., 1443 (2000). [Chem. Heterocycl. Compd., 36, 1241 (2000).]Google Scholar
  118. 118.
    L. Brandsma, Eur. J. Org. Chem., 4569 (2001).Google Scholar
  119. 119.
    L. Brandsma and N. A. Nedolya, Synthesis, 735 (2004).Google Scholar
  120. 120.
    L. Brandsma, Best Synthetic Methods. Synthesis of Acetylenes, Allenes and Cumulenes: Methods and Technique, Elsevier, Academic Press, Amsterdam (2004), p. 135.CrossRefGoogle Scholar
  121. 121.
    N. A. Nedolya, Khim. Geterotsikl. Soedin., 1443 (2008). [Chem. Heterocycl. Compd., 44, 1165 (2008).]Google Scholar
  122. 122.
    B. A. Trofimov and N. A. Nedolya, in: A. R. Katritzky, C. A. Ramsden, E. F. V. Scriven, and R. J. K. Taylor (editors), Comprehensive Heterocyclic Chemistry III, Vol. 3, Elsevier, Amsterdam (2008), p. 45.CrossRefGoogle Scholar
  123. 123.
    B. A. Trofimov, J. Heterocycl. Chem., 36, 1469 (1999).CrossRefGoogle Scholar
  124. 124.
    L. Brandsma, A. L. Spek, B. A. Trofimov, O. A. Tarasova, N. A. Nedolya, A. V. Afonin, and S. V. Zinchenko, Tetrahedron Lett., 42, 4687 (2001).CrossRefGoogle Scholar
  125. 125.
    O. A. Tarasova, N. A. Nedolya, L. Brandsma, and A. I. Albanov, Tetrahedron Lett., 45, 5881 (2004).CrossRefGoogle Scholar
  126. 126.
    L. Brandsma, Preparative Polar Organometallic Chemistry, Vol. 2, Springer-Verlag, Berlin, Heidelberg (1990), p. 144.CrossRefGoogle Scholar
  127. 127.
    J. Y. Lee, T. J. Lynch, D. T. Mao, D. E. Bergbreiter, and M. Newcomb, J. Am. Chem. Soc., 103, 6215 (1981).CrossRefGoogle Scholar
  128. 128.
    P. Sulmon, N. De Kimpe, and N. Schamp, J. Org. Chem., 53, 4457 (1988).CrossRefGoogle Scholar
  129. 129.
    W. Aelterman, N. De Kimpe, V. Tyvorskii, and O. Kulinkovich, J. Org. Chem., 66, 53 (2001).CrossRefGoogle Scholar
  130. 130.
    L. Brandsma, Preparative Polar Organometallic Chemistry, Vol. 2, Springer-Verlag, Berlin (1990), pp. 108, 118.CrossRefGoogle Scholar
  131. 131.
    M. Piffl, J. Weston, W. Günther, and E. Anders, J. Org. Chem., 65, 5942 (2000).CrossRefGoogle Scholar
  132. 132.
    H. J. Reich and W. W. Willis, Jr., J. Org. Chem., 45, 5227 (1980).CrossRefGoogle Scholar
  133. 133.
    S. Liao and D. B. Collum, J. Am. Chem. Soc., 125, 15114 (2003).CrossRefGoogle Scholar
  134. 134.
    J. K. Smith, D. E. Bergbreiter, and M. Newcomb, J. Am. Chem. Soc., 105, 4396 (1983).CrossRefGoogle Scholar
  135. 135.
    J. K. Smith, D. E. Bergbreiter, and M. Newcomb, J. Org. Chem., 50, 4549 (1985).CrossRefGoogle Scholar
  136. 136.
    J. T. Welch and K. W. Seper, J. Org. Chem., 53, 2991 (1988).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.A. E. Favorsky Irkutsk Institute of ChemistrySiberian Branch of the Russian Academy of SciencesIrkutskRussia

Personalised recommendations