Chemistry of Heterocyclic Compounds

, Volume 48, Issue 1, pp 82–94 | Cite as

Nucleophilic cyclizations of enediynes as a method for polynuclear heterocycle synthesis

Article

In this review, data on the heterocyclization of enediynes, initiated by attack of an external anionic nucleophile or a nucleophilic group present in the molecule at the C ≡ C bond of the enediyne, are summarized.

Keywords

alkynes enediynes cascade reactions heterocyclization polynuclear heterocyclic compounds 

References

  1. 1.
    K. Sonogashira, Y. Tohda, and N. Hagihara, Tetrahedron Lett., 16, 4467 (1975).CrossRefGoogle Scholar
  2. 2.
    N. Miyaura and A. Suzuki, Chem. Rev., 95, 2457 (1995).CrossRefGoogle Scholar
  3. 3.
    E. Shirakawa, K. Yamasaki, and T. Hiyama, Synthesis, 1544 (1998).Google Scholar
  4. 4.
    J. J. Li and G. W. Gribble, Palladium in Heterocyclic Chemistry. A Guide for the Synthetic Chemist, Tetrahedron Organic Chemistry Series, Vol. 20 (2002).Google Scholar
  5. 5.
    R. C. Larock, Pure Appl. Chem., 71, 1435 (1999).CrossRefGoogle Scholar
  6. 6.
    B. C. G. Söderberg, Coord. Chem. Rev., 224, 171 (2002).CrossRefGoogle Scholar
  7. 7.
    G. Zeni and R. C. Larock, Chem. Rev., 104, 2285 (2004).CrossRefGoogle Scholar
  8. 8.
    T. Sakamoto, Y. Kondo, and H. Yamanaka, Heterocycles, 27, 2225 (1988).CrossRefGoogle Scholar
  9. 9.
    S. Cacchi, G. Fabrizi, and L. M. Parisi, Heterocycles, 58, 667 (2002).CrossRefGoogle Scholar
  10. 10.
    K. C. Nicolaou and W.-M. Dai, Angew. Chem., Int. Ed., 30, 1387 (1991).CrossRefGoogle Scholar
  11. 11.
    H. H. Wenk, M. Winkler and W. Sander, Angew. Chem., Int. Ed., 42, 502 (2003).CrossRefGoogle Scholar
  12. 12.
    M. Kar and A. Basak, Chem. Rev., 107, 2861 (2007).CrossRefGoogle Scholar
  13. 13.
    A. Basak, S. Mandal, and S. S. Bag, Chem. Rev., 103, 4077 (2003).CrossRefGoogle Scholar
  14. 14.
    D. S. Rawat and J. M. Zaleski, Synlett, 393 (2004).Google Scholar
  15. 15.
    R. R. Jones and R. G. Bergman, J. Am. Chem. Soc., 94, 660 (1972).CrossRefGoogle Scholar
  16. 16.
    H. W. Whitlock, P. E. Sandvick, L. E. Overman, and P. B. Reichardt, J. Org. Chem., 34, 879 (1969).CrossRefGoogle Scholar
  17. 17.
    J. D. Bradshaw, D. Solooki, C. A. Tessier, and W. J. Youngs, J. Am. Chem. Soc., 116, 3177 (1994).CrossRefGoogle Scholar
  18. 18.
    B. Köhig, W. Pitsch, M. Klein, R. Vasold, M. Prall, and P. R. Schreiner, J. Org. Chem., 66, 1742 (2001).CrossRefGoogle Scholar
  19. 19.
    J. L. Scott, S. R. Parkin, and J. E. Anthony, Synlett, 161 (2004).Google Scholar
  20. 20.
    S. V. Kovalenko, S. Peabody, M. Manoharan, R. J. Clark, and I. V. Alabugin, Org. Lett., 6, 2457 (2004).CrossRefGoogle Scholar
  21. 21.
    S. W. Peabody, B. Breiner, S. V. Kovalenko, S. Patil, and I. V. Alabugin, Org. Biomol. Chem., 3, 218 (2005).CrossRefGoogle Scholar
  22. 22.
    Q. Zhou, P. J. Carroll, and T. M. Swager, J. Org. Chem., 59, 1294 (1994).CrossRefGoogle Scholar
  23. 23.
    P. R. Schreiner, M. Prall, and V. Lutz, Angew. Chem., Int. Ed., 42, 5757 (2003).CrossRefGoogle Scholar
  24. 24.
    C.-Y. Lee and M.-Y. Wu, Eur. J. Org. Chem., 3463 (2007).Google Scholar
  25. 25.
    H. Sugiyama, K. Yamashita, M. Nishi, and I. Saito, Tetrahedron Lett., 33, 515 (1992).CrossRefGoogle Scholar
  26. 26.
    P. Magnus, S. A. Eisenbeis, W. C. Rose, N. Zein, and W. Solomon, J. Am. Chem. Soc., 115, 12627 (1993).CrossRefGoogle Scholar
  27. 27.
    M.-J. Wu, C.- F. Lin, and S.-H. Chen, Org. Lett., 1, 767 (1999).CrossRefGoogle Scholar
  28. 28.
    M.-J. Wu, C.- F. Lin, and W.-D. Lu, J. Org. Chem., 67, 5907 (2002).CrossRefGoogle Scholar
  29. 29.
    Z.-Y. Chen and M.-J. Wu, Org. Lett., 7, 475 (2005).CrossRefGoogle Scholar
  30. 30.
    A. V. Gulevskaya, S. V. Dang, A. S. Tyaglivy, A. F. Pozharskii, O. N. Kazheva, A. N. Chekhlov, and O. A. Dyachenko, Tetrahedron, 66, 146 (2010).CrossRefGoogle Scholar
  31. 31.
    M.-J. Wu, C.-Y. Lee, and C.-F. Lin, Angew. Chem., Int. Ed., 41, 4077 (2002).CrossRefGoogle Scholar
  32. 32.
    C.-Y. Lee, C.-F. Lin, J.-L. Lee, C.-C. Chiu, W.-D. Lu, and M.-J. Wu, J. Org. Chem., 69, 2106 (2004).CrossRefGoogle Scholar
  33. 33.
    K. Hirano, Y. Inaba, T. Watanabe, S. Oishi, N. Fujii, and H. Ohno, Adv. Synth. Catal., 352, 368 (2010).CrossRefGoogle Scholar
  34. 34.
    K. Hirano, Y. Inaba, N. Takahashi, M. Shimano, S. Oishi, N. Fujii, and H. Ohno, J. Org. Chem., 76, 1212 (2011).CrossRefGoogle Scholar
  35. 35.
    C.-C. Chen, L.-Y. Chin, S.-C. Yang, and M.-J. Wu, Org. Lett., 12, 5652 (2010).CrossRefGoogle Scholar
  36. 36.
    B. P. Taduri, A. Odedra, C.-Y. Lung, and R.-S. Liu, Synthesis, 2050 (2007).Google Scholar
  37. 37.
    K. Miki, H. Kuge, R. Umeda, M. Sonoda, and Y. Tobe, Synth. Commun., 41, 1077 (2011).CrossRefGoogle Scholar
  38. 38.
    W.-R. Chang, Y.-H. Lo, C.-Y. Lee, and M.-J. Wu, Adv. Synth. Catal., 350, 1248 (2008).CrossRefGoogle Scholar
  39. 39.
    H.-C. Wu, L.-C. Hwang, and M.-J. Wu, Org. Biomol. Chem., 9, 670 (2011).CrossRefGoogle Scholar
  40. 40.
    D. E. Ames and M. I. Brohi, J. Chem. Soc., Perkin Trans. 1, 1384 (1980).Google Scholar
  41. 41.
    A. V. Gulevskaya, H. T. L. Nguyen, A. S. Tyaglivy, and A. F. Pozharskii, Tetrahedron, 68, 488 (2012).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2012

Authors and Affiliations

  1. 1.Southern Federal UniversityRostov-on-DonRussia

Personalised recommendations