Cyclocondensation of n-(prop-2-yn-1-yl)- and n-(penta-2,4-diyn-1-yl)- o-phenylenediamines with phenyl isothiocyanate and carbon disulfide

  • R. V. Novikov
  • N. A. Danilkina
  • I. A. BalovaEmail author

The cyclocondensation of N-(prop-2-yn-1-yl)-o-phenylenediamines with phenyl isothiocyanate leads to the formation of 1-(prop-2-yn-1-yl)-1,3-dihydro-2H-benzimidazole-2-thiones irrespective of the substituent nature at the triple bond. Reactions of both mono- and diacetylenic derivatives of o-phenylenediamine with carbon disulfide in the presence of KOH proceed with the formation of two heterocyclic nuclei simultaneously. From N-(prop-2-yn-1-yl)-o-phenylenediamines containing an aryl substituent at the triple bond, and N-(penta-2,4-diyn-1-yl)-o-phenylenediamines 2-methylidene-2,3-dihydro[1,3]thiazolo[3,2-a]benzimidazoles are formed. The latter are readily isomerized under the action of base giving thiazolo[3,2-a]benzimidazoles. The cyclocondensation of N-(alk-2-yn-1-yl)-o-phenylenediamines with CS2 leads to [1,3]thiazino[3,2-a]benzimidazoles.


1-(3-arylprop-2-yn-1-yl)-1,3-dihydro-2H-benzimidazole-2-thiones N-(penta-2,4-diyn-1-yl)- o-phenylenediamines N-(prop-2-yn-1-yl)-o-phenylenediamines carbon disulfide [1,3]thiazolo[3,2-a]- benzimidazoles phenyl isothiocyanate cyclocondensation 


The authors are deeply grateful to associate professor S. I. Selivanova for recording the NMR spectra. The authors thank the Saint-Petersburg State University for financial support (Research grant


  1. 1.
    R. Crossley, US Pat. 4873237 (1989); Chem. Abstr., 112, 198401 (1990).Google Scholar
  2. 2.
    N. H. Grant and D. E. Clark, US Pat. 4361574 (1982); Chem. Abstr., 98, 101200 (1983).Google Scholar
  3. 3.
    C. M. Rogers, T. J. Rogers, and S. C. Gilman, J. Immunopharmacol., 7, 479 (1985).CrossRefGoogle Scholar
  4. 4.
    R. I. Fenichel, F. J. Gregory, and H. E. Alburn, Br. J. Cancer, 33, 329 (1976).CrossRefGoogle Scholar
  5. 5.
    H. A. Abdel-Aziz, A. M. Gamal-Eldeen, N. A. Hamdy, and I. M. I. Fakhr, Arch. Pharm., 342, 230 (2009).CrossRefGoogle Scholar
  6. 6.
    V. M. Dianov, Khim.-farm. Zh., 41, No. 6, 20 (2007).Google Scholar
  7. 7.
    J. J. D’Amico, R. H. Campbell, and E. C. Guinn, J. Org. Chem., 29, 865 (1964).CrossRefGoogle Scholar
  8. 8.
    A. E. Alper and A. Taurins, Can. J. Chem., 45, 2903 (1967).CrossRefGoogle Scholar
  9. 9.
    A. N. Krasovskii and P. M. Kochergin, Khim. Geterotsikl. Soedin., 899 (1967). [Chem. Heterocycl. Comp., 3, 709 (1967)].CrossRefGoogle Scholar
  10. 10.
    A. N. Krasovskii, P. M. Kochergin, and L. V. Samoilenko, Khim. Geterotsikl. Soedin., 827 (1970). [Chem. Heterocycl. Comp., 6, 766 (1970)].CrossRefGoogle Scholar
  11. 11.
    A. A. O. Sarhan, H. A. H. El-Sherief, and A. M. Mahmoud, Tetrahedron, 52, 10485 (1966).CrossRefGoogle Scholar
  12. 12.
    K. K. Balasubramanian and B. Venugopalan, Tetrahedron Lett., 15, 2643 (1974).CrossRefGoogle Scholar
  13. 13.
    K. K. Balasubramanian and B. Venugopalan, Tetrahedron Lett., 15, 2645 (1974).CrossRefGoogle Scholar
  14. 14.
    M. M. Heravi, A. Keivanloo, M. Rahimizadeh, M. Bakavoli, and M. Ghassemzadeh, Tetrahedron Lett., 45, 5747 (2004).CrossRefGoogle Scholar
  15. 15.
    A. N. Krasovskii and P. M. Kochergin, Khim.-farm. Zh., 2, No. 10, 18 (1968).Google Scholar
  16. 16.
    A. A. Shklyarenko, V. V. Yakovlev, and V. N. Chistokletov, Zh. Org. Khim., 40, 617 (2004).Google Scholar
  17. 17.
    K. Ikeda, S.-I. Hata, Y. Tanaka, and T. Yamamoto, Org. Prep. Proc. Int., 32, 401 (2000).CrossRefGoogle Scholar
  18. 18.
    R. V. Novikov, M. E. Borovitov, and I. A. Balova, Khim. Geterotsikl. Soedin., 627 (2008). [Chem. Heterocycl. Comp., 44, 494 (2008)].CrossRefGoogle Scholar
  19. 19.
    N. Yu. Sipkina and I. A. Balova, Zh. Obshch. Khim., 73, 2002 (2003).Google Scholar
  20. 20.
    U. Vögeli, W. von Philipsborn, K. Nagarajan, and M. D. Nair, Helv. Chem. Acta, 61, 607 (1978).CrossRefGoogle Scholar
  21. 21.
    P. Sohar, Z. Szöke-Molnar, G. Stajer, and G. Bernath, Magn. Reson. Chem., 27, 959 (1989).CrossRefGoogle Scholar
  22. 22.
    Y. Kurasawa, R. Katoh, A. Takada, H. S. Kim, and Y. Okamoto, J. Heterocycl. Chem., 29, 1001 (1992).CrossRefGoogle Scholar
  23. 23.
    V. S. Berseneva, A. V. Tkachev, Yu. Yu. Morzherin, W. Dehaen, I. Luyten, S. Toppet, and V. A. Bakulev, J. Chem. Soc., Perkin Trans. 1, 2133 (1998).Google Scholar
  24. 24.
    G. Stájer, A. E. Szabó, and P. Sohár, Heterocycles, 51, 1849 (1999).CrossRefGoogle Scholar
  25. 25.
    V. S. Berseneva, Yu. Yu. Morzherin, W. Dehaen, I. Luyten, and V. A. Bakulev, Tetrahedron, 57, 2179 (2001).CrossRefGoogle Scholar
  26. 26.
    V. A. Bakulev, V. S. Berseneva, N. P. Belskaia, Yu. Yu. Morzherin, A. Zaitsev, W. Dehaen, I. Luyten, and S. Toppet, Org. Biomol. Chem., 1, 134 (2003).CrossRefGoogle Scholar
  27. 27.
    U. Vögeli and W. von Philipsborn, Org. Magn. Reson., 7, 617 (1975).CrossRefGoogle Scholar
  28. 28.
    U. Vögeli, D. Herz, and W. von Philipsborn, Org. Magn, Reson. 13, 200 (1980).CrossRefGoogle Scholar
  29. 29.
    L. Brandsma and H. D. Verkruijsse, Synthesis of Acetylenes, Allenes, and Cumulenes. A Laboratory Manual, Elsevier (1981), p. 221.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2011

Authors and Affiliations

  • R. V. Novikov
    • 1
  • N. A. Danilkina
    • 1
  • I. A. Balova
    • 1
    Email author
  1. 1.Saint-Petersburg State UniversitySaint PetersburgRussia

Personalised recommendations