Methods for the synthesis of cinnolines (review)

  • O. V. Vinogradova
  • I. A. Balova


This review analyses the principal approaches to the synthesis of the cinnoline nucleus, used as synthetic precursors of arenediazonium salts, arylhydrazones, and arylhydrazines, and also reductive methods for the synthesis of polycondensed derivatives of cinnoline. The mechanisms of the transformations and the possibilities and limitations of the various methods are discussed. Special attention is paid to methods based on the cyclization of derivatives of arenediazonium salts, which have been developed substantially in recent years.


cinnolines benzo[c]cinnolines synthesis cyclization arylhydrazones arenediazonium salts ortho-ethynylarenediazonium salts 


  1. 1.
    M. J. Chapdelaine, C. J. Ohnmacht, C. Becker, H.-F. Chang, and B. T. Dembofsky, SE Pat. SE2006/001433, WO 2007073283,
  2. 2.
    N. M. Aston, J. E. Robinson, and N. Trivedi, UK Pat. GB2006/003864, WO 2007045861,
  3. 3.
    D. J. Bears, H. Vankayalapati, and C. L. Grand, US Pat. US2006/019076, WO 2006124996,
  4. 4.
    B. Hu, J. E. Wrobel, M. D. Collini, and R. J. Unwalla, US Pat. US2006/007224, WO 2006094034,
  5. 5.
    M. Lim, G. Zhang, and B. P. Murphy, US Pat. US2006/008559, WO 2006099115, US2006156485,
  6. 6.
    W. Lewgowd and A. Stanczak, Arch. Pharm., 340, Is. 2, 65 (2007).CrossRefGoogle Scholar
  7. 7.
    Y. Sato, Y. Suzuki, K. Yamamoto, S. Kuroiwa, and S. Maruyama, Jpn. Pat. JP2005/10494, WO 2005121105,
  8. 8.
    L. F. Hennequin, A. P. Thomas, C. Johnstone, E. S. E. Stokes, P. A. Pie, J.-J. M. Lohman, D. J. Ogilve, M. Dukes, S. R. Wedge, J. O. Curven, J. Kendrew, and C. Labert van der Brempt, J. Med. Chem., 42, 5369 (1999).CrossRefGoogle Scholar
  9. 9.
    A. L. Ruchelman, S. K. Sing, A. Ray, X. Wu, J.-M. Yang, N. Zhu, A. Liu, L. F. Liu, and E. J. La Voie, Bioorg. Med. Chem., 12, 795 (2004).CrossRefGoogle Scholar
  10. 10.
    Y. Yu, S. K. Singh, A. Liu, T.-K. Li, L. F. Liu, and E. J. La Voie, Bioorg. Med. Chem., 11, 1475 (2003).CrossRefGoogle Scholar
  11. 11.
    P. Barraja, P. Diana, A. Lauria, A. Passananti, A. M. Almerico, C. Minnei, S. Longu, D. Congiu, C. Musiu, and P. LaColla, Bioorg. Med. Chem., 7, 1591 (1999).CrossRefGoogle Scholar
  12. 12.
    S. R. Pattan, M. S. Ali, J. S. Pattan, and V. V. K. Redd, Ind. J. Heterocycl. Chem., 14, No. 2, 157 (2004).Google Scholar
  13. 13.
    B. Narayana, K. K. Ra, B. V. Ashalatha, and N. S. Kumari, Ind. J. Chem., 45B, 1704 (2006).Google Scholar
  14. 14.
    E. Gavini, C. Juliano, A. Mulu, G. Pirisino, G. Murineddu, and G. A. Pinna, Arch. Pharm., 333, Is. 10, 341 (2000).CrossRefGoogle Scholar
  15. 15.
    B. P. Choudhari and V. V. Mulwad, Ind. J. Chem., 45B, 309 (2006).Google Scholar
  16. 16.
    K. Rehse and H. Gonska, Arch. Pharm., Chem. Life Sci., 338, 590 (2005).CrossRefGoogle Scholar
  17. 17.
    P. Ramalingam, S. Ganapaty, Ch. B. Rao, and T. K. Ravi, Ind. J. Heterocycl. Chem., 15, 359 (2006).Google Scholar
  18. 18.
    A. Gomtsyan, E. K. Bayburt, R. G. Schmidt, G. Z. Zheng, Ri. J. Perner, St. Didomenico, J. R. Koenig, S. Turner, T. Jinkerson, I. Drizin, S. M. Hannick, B. S. Macri, H. A. McDonald, P. Honore, C. T. Wismer, K. C. Marsh, J. Wetter, K. D. Stewart, T. Oie, M. F. Jarvis, C. S. Surowy, C. R. Faltynek, and C.-H. Lee, J. Med. Chem., 48, 744 (2005).CrossRefGoogle Scholar
  19. 19.
    M. Alvarado, M. Barcelo, L. Carro, C. F. Masaguer, and E. Ravina, Chem. Biodiversity, 3, No. 1, 106 (2006).CrossRefGoogle Scholar
  20. 20.
    F. M. Abdelrazek, P. Metz, N. H. Metwally, and S. F. El-Mahrouky, Arch. Pharm., 339, Is. 8, 456 (2006).CrossRefGoogle Scholar
  21. 21.
    T. Mitsumori, M. Bendikov, J. Sedo, and F. Wudl, Chem. Mater., 15, 3579 (2003).CrossRefGoogle Scholar
  22. 22.
    V. G. Chapoulaud, N. Ple, A. Turck, and G. Queguiner, Tetrahedron, 56, 5499 (2000).CrossRefGoogle Scholar
  23. 23.
    A. Busch, A. Turck, K. Nowicka, A. Barasella, C. Andraud, and N. Ple, Heterocycles, 71, 1723 (2007).Google Scholar
  24. 24.
    V. Richter, Berichte, 16, 677 (1883).Google Scholar
  25. 25.
    J. C. E. Simpson, Condensed Pyridazine and Pyrazine Rings. The Chemistry of Heterocyclic Compounds (Ed. A. Weisberg), Interscience, New York, London (1953), p. 3.Google Scholar
  26. 26.
    G. M. Singerman, in: The Chemistry of Heterocyclic Compounds (Ed. R. N. Castle), Interscience, New York (1973), Vol. 27, p. 1.CrossRefGoogle Scholar
  27. 27.
    N. J. Leonard, Chem. Rev., 37, 269 (1945).CrossRefGoogle Scholar
  28. 28.
    T. L. Jacobs, in: Heterocyclic Compounds (Ed. R. C. Elderfield), Wiley, New York (1957), Vol. 6, p. 136.Google Scholar
  29. 29.
    N. Haider and W. Holzer, Sci. Synthesis, Product Class 9: Cinnolines, 16, 251 (2004).Google Scholar
  30. 30.
    D. J. Brown, Cinnolines and Phthalazines, Suppl. II, John Wiley & Sons, Inc. (2005).Google Scholar
  31. 31.
    R. S. W. Braithwaite and P. F. Holt, J. Chem. Soc., 3025 (1959)Google Scholar
  32. 32.
    D. M. Watterson, L. Van Eldik, J. Haiech, M. Hibert, J.-J. Bourguignon, A. Velentza, W. Hu, and M. Zasadzki, US Pat. US2005/039476, WO 2006050359.
  33. 33.
    P. W. Neber, G. Knoller, K. Herrst, and A. Trissler, Liebigs Ann. Chem., 471, 113 (1929).CrossRefGoogle Scholar
  34. 34.
    E. J. Alford and K. Schofield, J. Chem. Soc., 2102 (1952).Google Scholar
  35. 35.
    M. A.-M. Gomaa, Tetrahedron Lett., 44, 3493 (2003).CrossRefGoogle Scholar
  36. 36.
    M. S. Shvartsberg and I. D. Ivanchikova, Tetrahedron Lett., 41, 771 (2000).CrossRefGoogle Scholar
  37. 37.
    K. Pfannstiel and J. Janecke, Berichte, 75, 1096 (1942).Google Scholar
  38. 38.
    H. E. Baumgarten and C. H. Anderson, J. Am. Chem. Soc., 80, 1981 (1958).CrossRefGoogle Scholar
  39. 39.
    A. S. Kiselyov, Tetrahedron Lett., 36, 1383 (1995).CrossRefGoogle Scholar
  40. 40.
    A. S. Kiselyov and C. Domingues, Tetrahedron Lett., 40, 5111 (1999).CrossRefGoogle Scholar
  41. 41.
    L. Strekowski, S. E. Patterson, L. Janda, R. L. Wydra, D. B. Harden, M. Lipowska, and M. T. Cegla, J. Org. Chem., 57, 196 (1992).CrossRefGoogle Scholar
  42. 42.
    C. B. Kanner and U. K. Pandit, Tetrahedron, 37, 3513 (1981).CrossRefGoogle Scholar
  43. 43.
    H. Al-Awadhi, F. Al-Omran, and M. H. Elnagdi, Tetrahedron, 51, 12745 (1995).CrossRefGoogle Scholar
  44. 44.
    N. A. Al-Awadi, M. H. Elnagdi, Y. A. Ibrahim, K. Kaul, and A. Kumar, Tetrahedron, 57, 1609 (2001).CrossRefGoogle Scholar
  45. 45.
    B. Al-Saleh, M. M. Abdel-Khalik, E. Darwich, O. A.-M. Salah, and M. M. Elnagdi, Heteroatom Chem., 13, 141 (2002).CrossRefGoogle Scholar
  46. 46.
    M. Abdel-Megid, Synth. Comm., 33, 153 (2003).CrossRefGoogle Scholar
  47. 47.
    A. Kumar, N. A. Al-Awadi, M. H. Elnagdi, Y. A. Ibrahim, and K. Kaul, Organic Synthesis. Pt 3. Novel Cyclization of 2-Arylhydrazonopropanals into Cinnolines, John Wiley & Sons, Inc. (Ed.) (2001), p. 401.Google Scholar
  48. 48.
    H. J. Barber, E. Lunt, J. Chem. Soc, Perkin Trans. 1, 9, 1156 (1968).Google Scholar
  49. 49.
    R. N. Castle, R. R. Shoup, K. Adachi, and D. L. Aldous, J. Heterocycl. Chem., 1, 98 (1964).CrossRefGoogle Scholar
  50. 50.
    F. E. M. El-Baih, M. M. S. Koraa, and G. Al-Hazimi, Int. J. Appl. Chem., 2, No. 2–3, 103 (2006).Google Scholar
  51. 51.
    H.-R. Bjorsvik, R. R. Gonzales, and L. Liguori, J. Org. Chem., 69, 7720 (2004).CrossRefGoogle Scholar
  52. 52.
    R. S. W. Braithwaite, P. F. Holt, and A. N. Hughes, J. Chem. Soc., 4073 (1958).Google Scholar
  53. 53.
    J. W. Barton and D. J. Rowe, Tetrahedron Lett., 24, 299 (1983).CrossRefGoogle Scholar
  54. 54.
    J. W. Barton and M. K. Sheperd, Tetrahedron Lett., 25, 4967 (1984).CrossRefGoogle Scholar
  55. 55.
    V. Benin and P. Kaszynski, J. Org. Chem., 65, 6388 (2000).CrossRefGoogle Scholar
  56. 56.
    G. A. Russell, E. J. Geels, F. J. Smentowski, K.-Y. Chang, J. Reynolds, G. Knaupp, J. Am. Chem. Soc., 89, 3821 (1967).CrossRefGoogle Scholar
  57. 57.
    J. R. Keneford and J. C. E. Simpson, J. Chem. Soc., 917 (1947).Google Scholar
  58. 58.
    J. R. Keneford and J. C. E. Simpson, J. Chem. Soc., 354 (1948).Google Scholar
  59. 59.
    K. Schofield and R. S. Theobald, J. Chem. Soc., 2404 (1949).Google Scholar
  60. 60.
    D. W. Ockenden and K. Schofield, J. Chem. Soc., 3706 (1953).Google Scholar
  61. 61.
    C. Baldoli, I. Licandro, S. Maiorana, E. Menta, and A. Papagni, Synthesis, 288 (1987).Google Scholar
  62. 62.
    N. Le Fur, L. Mojovic, A. Turck, N. Ple, G. Quequiner, V. Reboul, S. Perrio, and P. Metzner, Tetrahedron, 60, 7983 (2004).CrossRefGoogle Scholar
  63. 63.
    A. Turck, N. Ple, and G. Quequiner, Tetrahedron, 51, 13045 (1995).CrossRefGoogle Scholar
  64. 64.
    K. J. Hodgetts, US Pat. PCT/US2005/011904, WO 2005099710;
  65. 65.
    M. Busch and M. Klett, Berichte, 25, 2847 (1892).Google Scholar
  66. 66.
    K. Schofield and J. C. E. Simpson, J. Chem. Soc., 520 (1945).Google Scholar
  67. 67.
    K. Schofield and T. Swain, J. Chem. Soc., 2393 (1949).Google Scholar
  68. 68.
    A. J. Nunn and K. Schofield, J. Chem. Soc., 3700 (1953).Google Scholar
  69. 69.
    A. R. Osborn and K. Schofield, J. Chem. Soc., 4207 (1956).Google Scholar
  70. 70.
    D. E. Ames, R. F. Chapman, H. Z. Kucharska, and D. Waite, J. Chem. Soc., 5391 (1965).Google Scholar
  71. 71.
    S. F. Vasilevsky and E. V. Tretyakov, Liebigs Ann. Chem., 775 (1995).Google Scholar
  72. 72.
    S. F. Vasilevsky, E. V. Tretyakov, and H. D. Verkruijsse, Synth. Comm., 24, 1733 (1994).CrossRefGoogle Scholar
  73. 73.
    E. V. Tretyakov and S. F. Vasilevsky, Heterocycl. Comm., 4, 519 (1998).Google Scholar
  74. 74.
    E. V. Tretyakov, D. W. Knight, and S. F. Vasilevsky, J. Chem. Soc., Perkin Trans. 1, 3721 (1999).Google Scholar
  75. 75.
    O. V. Vinogradova, V. N. Sorokoumov, S. F. Vasylevsky, and I. A. Balova, Tetrahedron Lett., 48, 4907 (2007).CrossRefGoogle Scholar
  76. 76.
    O. V. Vinogradova, V. N. Sorokoumov, and I. A. Balova, Vestnik SPbGU, Ser. 4, Fizika, Khimiya, No. 4, 132 (2007).Google Scholar
  77. 77.
    L. G. Fedenok, I. I. Barabanov, and I. D. Ivanchikova, Tetrahedron Lett., 40, 805 (1999).CrossRefGoogle Scholar
  78. 78.
    L. G. Fedenok, I. I. Barabanov, and I. D. Ivanchikova, Tetrahedron, 57, 1331 (2001).CrossRefGoogle Scholar
  79. 79.
    L. G. Fedenok, I. I. Barabanov, V. S. Bashurova, and G. A. Bogdanchikov, Tetrahedron, 60, 2137 (2004).CrossRefGoogle Scholar
  80. 80.
    L. G. Fedenok and N. Zolnikova, Tetrahedron Lett., 44, 5453 (2003).CrossRefGoogle Scholar
  81. 81.
    N. A. Zol’nikova, L. G. Fedenok, E. V. Peresypkina, and A. V. Virovets, Rus. J. Org. Chem., 43, 790 (2007).CrossRefGoogle Scholar
  82. 82.
    S. Brase, S. Dahmen, and J. Heuts, Tetrahedron Lett., 40, 6201 (1999).CrossRefGoogle Scholar
  83. 83.
    S. Brase, C. Gil, and K. Knepper, Bioorg. Med. Chem., 10, 2415 (2002).CrossRefGoogle Scholar
  84. 84.
    S. Brase and S. Dahmen, Chem. Eur. J., 5, 1899 (2000).CrossRefGoogle Scholar
  85. 85.
    D. B. Kimball, A. G. Hayes, and M. M. Haley, Org. Lett., 2, 3825 (2000).CrossRefGoogle Scholar
  86. 86.
    D. B. Kimball, T. J. R. Weakly, R. Herges, and M. M. Haley, J. Am. Chem. Soc., 124, 13463 (2002).CrossRefGoogle Scholar
  87. 87.
    D. B. Kimball, T. J. R. Weakly, R. Herges, and M. M. Haley, J. Am. Chem. Soc., 124, 1572 (2002).CrossRefGoogle Scholar
  88. 88.
    D. B. Kimball, T. J. R. Weakly, and M. M. Haley, J. Org. Chem., 67, 6395 (2002).CrossRefGoogle Scholar
  89. 89.
    D. B. Kimball and M. M. Haley, Angew. Chem., Int. Ed., 41, 3338 (2002).CrossRefGoogle Scholar
  90. 90.
    C. J. Emanuel and P. B. Shevlin, J. Am. Chem. Soc., 116, 5991 (1994).CrossRefGoogle Scholar
  91. 91.
    K. Hata, K. Tatematsu, and B. Kubota, Bull. Chem. Soc. Jpn., 10, 425 (1935).CrossRefGoogle Scholar
  92. 92.
    R. B. Sandin and T. L. Cairns, J. Am. Chem. Soc., 58, 2019 (1936).CrossRefGoogle Scholar
  93. 93.
    V. T. Abaev, A. V. Gutnov, A. V. Butin, and V. E. Zavodnik, Tetrahedron Lett., 56, 8933 (2000).Google Scholar
  94. 94.
    S. L. Bogza, V. I. Dulenko, S. Yu. Zinchenko, K. I. Kobrakov, and I. V. Pavlov, Khim. Geterotsikl. Soedin., 1737 (2004). [Chem. Heterocycl. Comp., 40, 1506 (2004).]Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2008

Authors and Affiliations

  1. 1.Chemical FacultySt. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations