Chemistry of Heterocyclic Compounds

, Volume 43, Issue 2, pp 151–159 | Cite as

Microwave-promoted automated synthesis of a coumarin library

  • M. Katkevičs
  • A. Kontijevskis
  • I. Mutule
  • E. Sūna
Article

Abstract

A 30-membered library of coumarins has been synthesized in a microwave-assisted Pechmann reaction using neat trifluoroacetic acid both as an acidic reagent and a reaction medium. Alternatively, polymer-supported sulfonic acid Amberlyst-15 could also be employed to facilitate the formation of coumarins. The use of a specially-built microwave synthesizer with liquid handling tools rendered the automated synthesis of a coumarin library feasible.

Keywords

coumarin microwave promoted synthesis library synthesis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Hamelin, J.-P. Bazureau, and F. Texier-Boullet, in: A. Loupy (editor), Microwaves in Organic Synthesis, Wiley-VCH, Weinheim, 2002, p. 253.CrossRefGoogle Scholar
  2. 2.
    T. Besson and C. T. Brain, in: P. Lidström and J. P Tierney (editors), Microwave-Assisted Organic Synthesis, Blackwell Publishing, Oxford, 2004, p. 44.Google Scholar
  3. 3.
    C. O. Kappe and A. Stadtler, Microwaves in Organic and Medicinal Chemistry, Wiley-VCH, Weinheim, 2005.CrossRefGoogle Scholar
  4. 4.
    R. D. H. Murray, Nat. Prod. Rep., 591 (1989).Google Scholar
  5. 5.
    L. A. Singer and N. P. Kong, J. Am. Chem. Soc., 76, 6208 (1954).Google Scholar
  6. 6.
    A. Mitra, S. K. Misra, and A. Patra, Synth. Commun., 10, 915 (1980).Google Scholar
  7. 7.
    H. Von Pechmann and C. Duisberg, Ber. Dtsch. Chem. Ges., 17, 929 (1884).Google Scholar
  8. 8.
    A. Russell and J. R Frye, Org. Synth., Coll. Vol. 3, 281 (1955).Google Scholar
  9. 9.
    L. L. Woods and J. Sapp, J. Org. Chem., 27, 3703 (1962).Google Scholar
  10. 10.
    J. Hoefnagel, E. A. Gunnewegh, R. S. Downing, and H. van Bekkum, J. Chem. Soc., Chem. Commun., 225 (1995).Google Scholar
  11. 11.
    E. Canter, K. Martin, and J. Robertson, J. Chem. Soc., 1255 (1931).Google Scholar
  12. 12.
    E. H. Woodruff, Org. Synth., Coll. Vol. 3, 581 (1955).Google Scholar
  13. 13.
    V. Singh, J. Singh, K. P. Kaur, and G. L. Kad, J. Chem. Res. (S), 58 (1996).Google Scholar
  14. 14.
    V. Singh, S. Kaur, V. Sapehiyia, J. Singh, and G. L. Kad, Catal. Commun., 6, 57 (2005).CrossRefGoogle Scholar
  15. 15.
    A. Shockravi, H. Valizadeh, and M. M. Heravi, Phosph., Sulfur, Silicon, 177, 2835 (2002).CrossRefGoogle Scholar
  16. 16.
    S. Frere, V. Thiery, and T. Besson, Tetrahedron Lett., 42, 2791 (2001).CrossRefGoogle Scholar
  17. 17.
    M. S. Manhas, S. N. Ganguly, S. Mukherjee, A. K. Jain, and A. K. Bose, Tetrahedron Lett., 47, 2423 (2006).CrossRefGoogle Scholar
  18. 18.
    I. R. Baxendale, A.-L. Lee, and S. V. Ley, in: P. Lidström, J. P. Tierney (editors), Microwave-Assisted Organic Synthesis, Blackwell Publishing, Oxford, 2004, p. 133.Google Scholar
  19. 19.
    B. B. Dey, J. Chem. Soc., 102, 1606 (1915).Google Scholar
  20. 20.
    S. Sethna and R. Phadke, Org. React., 7, 1 (1953).Google Scholar
  21. 21.
    M. K. Potdar, S. S. Mohile, and M. M. Salunkhe, Tetrahedron Lett., 42, 9285 (2001).CrossRefGoogle Scholar
  22. 22.
    D. S. Bose, A. P. Rudradas, and M. H. Babu, Tetrahedron Lett., 43, 9195 (2002).CrossRefGoogle Scholar
  23. 23.
    H. Valizadeh and A. Shockravi, Tetrahedron Lett., 46, 3501 (2005).CrossRefGoogle Scholar
  24. 24.
    L. Xie, Y. Takeuchi, L. M. Cosentino, A. T. McPhail, and K.-H. Lee, J. Med. Chem., 44, 664 (2001).PubMedCrossRefGoogle Scholar
  25. 25.
    M. J. S. Dewar, E. G. Zoebish, E. F. Healy, and J. J. P. Stewart, J. Am. Chem. Soc., 107, 3902 (1985).CrossRefGoogle Scholar
  26. 26.
    L. Kürti, B. Czakó, in Strategic Applications of Named Reactions in Organic Synthesis, Elsevier Acad. Press, Amsterdam, 2005, p. 472.Google Scholar
  27. 27.
    J. Israelstam, J. Org. Chem., 26, 240 (1961).CrossRefGoogle Scholar
  28. 28.
    V. Bayer, R. Pastor, and A. Cambon, J. Fluor. Chem., 20, 187 (1982).CrossRefGoogle Scholar
  29. 29.
    J. N. Chatterjea, S. C. Bhakta, and A. K. Chattopadhyay, J. Indian Chem. Soc., 51, 752 (1974).Google Scholar
  30. 30.
    H. Von Pechmann and C. Duisberg, Ber. Dtsch. Chem. Ges., 16, 2127 (1883).Google Scholar
  31. 31.
    M. T. Bogert and R. M. Isham, J. Am. Chem. Soc., 36, 518 (1914).Google Scholar
  32. 32.
    W. Borsche and V. Wannagat, Justus Liebigs Ann. Chem., 569, 81 (1950).Google Scholar
  33. 33.
    W. B. Whalley, J. Chem. Soc., 3235 (1951).Google Scholar
  34. 34.
    M. Narayana, J. F. Dash, and P. D. Gardner, J. Org. Chem., 27, 4704 (1962).Google Scholar
  35. 35.
    M. Kotani, K. Yamamoto, J. Oyamada, Y. Fujiwara, and T. Kitamura, Synthesis, 9, 1466 (2004).Google Scholar
  36. 36.
    G. Bargellini and A. Grippa, Gazz. Chim. Ital., 57, 141 (1927).Google Scholar
  37. 37.
    V. Boekelheide and F. C. Pennington, J. Am. Chem. Soc., 74, 1558 (1952).CrossRefGoogle Scholar
  38. 38.
    H. Von Pechmann and J. B. Cohen, Ber. Dtsch. Chem. Ges., 17, 2190 (1884).Google Scholar
  39. 39.
    M. Ahmad and R. D. Desai, J. Univ. Bombay Sci., 6/2, 89 (1937).Google Scholar
  40. 40.
    D. P. Chakraborty and D. Chatterji, J. Org. Chem., 34, 3784 (1969).PubMedCrossRefGoogle Scholar
  41. 41.
    H. Von Pechmann and J. B. Cohen, Ber. Dtsch. Chem. Ges., 17, 2188 (1884).Google Scholar
  42. 42.
    R. Adams, D. C. Pease, C. K. Cain, and J. H. Clark, J. Am. Chem. Soc., 62, 2402 (1940).CrossRefGoogle Scholar
  43. 43.
    A. Altomare, M. C. Burla, M. Camalli, G. L Cascarano, C. Giacovazzo, A. Guagliardi, A. G. G. Moliterni, R. Spagna, J. Appl. Crystallogr., 32, 115 (1999).CrossRefGoogle Scholar
  44. 44.
    V. I. Andrianov, Kristallografiya, 32, 228 (1987).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • M. Katkevičs
    • 1
  • A. Kontijevskis
    • 1
  • I. Mutule
    • 1
  • E. Sūna
    • 1
  1. 1.Latvian Institute of Organic SynthesisRigaLatvia

Personalised recommendations