Advertisement

Chemistry of Heterocyclic Compounds

, Volume 41, Issue 3, pp 281–311 | Cite as

Spiropyrans: Synthesis, Properties, and Application. (Review)

  • B. S. Lukyanov
  • M. B. Lukyanova
Article

Abstract

Published data on the synthesis and structural modification of spiropyrans and bisspiropyrans and production of the heteroanalogs of spiropyrans are classified and analyzed. The chemical characteristics of spiropyrans, including complexation of the open-chain isomers and cyclic forms are examined. Special attention is paid to the photochromic characteristics of spiropyrans at interfaces between phases.

Keywords

bisspiropyrans light-sensitive materials spiropyrans photochromism 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    H. Decker and H. Fellenberg, Liebigs Ann. Chem., 364, 1 (1909).Google Scholar
  2. 2.
    W. Dilthey and R. Wizinger, Berichte, 59, 1856 (1926).Google Scholar
  3. 3.
    W. Dilthey, C. Berres, E. Holterhoff, and H. Wubken, J. Prakt. Chem., 114, 179 (1926).Google Scholar
  4. 4.
    A. Lowenbein and W. Katz, Berichte, 59, 1377 (1926).Google Scholar
  5. 5.
    E. Fischer and Y. Hirshberg, J. Chem. Soc., 4522 (1952).Google Scholar
  6. 6.
    G. I. Lashkov, M. V. Savost’yanova, A. V. Shtablya, and T. A. Shakhverdov, in: Molecular Photonics [in Russian], Nauka, Leningrad (1970), p. 299.Google Scholar
  7. 7.
    S. M. Aldoshin, Spiropyrans. Structural Characteristics and Photochemical Properties [in Russian], Akad. Nauk SSSR, N. N. Semenov Institute of Chemical Physics, Chernogolovka (1989).Google Scholar
  8. 8.
    J. H. Day, Chem. Rev., 63, 65 (1963).Google Scholar
  9. 9.
    V. A. Barachevskii, in: Spectroscopy of Phototransformations in Molecules [in Russian], Nauka, Leningrad (1977), p. 182.Google Scholar
  10. 10.
    V. A. Barachevskii, G. I. Lashkov, and V. A. Tsekhomskii, Photochromism and its Application [in Russian], Khimiya, Moscow (1977).Google Scholar
  11. 11.
    V. D. Ermakova, V. D. Arsenov, M. I. Cherkashin, and P. P. Kisilitsa, Usp. Khim., 46, 292 (1977).Google Scholar
  12. 12.
    V. A. Barachevskii, V. M. Kozenkova, and E. D. Kvasnikov, Uspekhi Nauchnoi Fotografii, 19, 108 (1978).Google Scholar
  13. 13.
    K. G. Dzhaparidze, Spirochromenes, Metsniereba, Tbilisi (1979).Google Scholar
  14. 14.
    E. R. Zakhs, V. P. Martynov, and L. S. Efros, Khim. Geterotsikl. Soedin., 435 (1979).Google Scholar
  15. 15.
    A. S. Kholmanskii, A. V. Zubkov, and K. M. Dyumaev, Usp. Khim., 50, 569 (1981).Google Scholar
  16. 16.
    A. V. El’tsov (editor), Organic Photochromes [in Russian], Khimiya, Leningrad (1982).Google Scholar
  17. 17.
    H. Duerr, H. Bouas-Laurent (editors), Photochromism. Molecules and Systems, Elsevier, Amsterdam, (1990).Google Scholar
  18. 18.
    S. M. Aldoshin, in: J. C. Carno and R. J. Gugliemetti (editors), Organic Photochromic and Thermochromic Compounds, Vol. 2, Kluwer Academic/Plenum Publishers, New York, (1999), p. 297.Google Scholar
  19. 19.
    B. Wizinger and H. Wennig, Helv. Chim. Acta, 23, 247 (1940).Google Scholar
  20. 20.
    M. A. Gal’bershtam, Thesis for Doctor of Chemical Sciences, Moscow (1979).Google Scholar
  21. 21.
    P. Burri, Swiss Patent 603656, Ref. Zh. Khim., 1N359P (1980).Google Scholar
  22. 22.
    P. Burri, US Patent 4339385; Izobreteniya v SSSR i za Rubezhom, No. 7, 138 (1983); http://www.uspto.gov/patft.Google Scholar
  23. 23.
    P. Burri, US Patent 4343944; Izobreteniya v SSSR i za Rubezhom, No. 9, 107 (1983); http://www.uspto.gov/patft.Google Scholar
  24. 24.
    L. I. Kon’kov, N. M. Przhiyalgovskaya, and L. N. Kurkovskaya, Khim. Geterotsikl. Soedin., 1101 (1984).Google Scholar
  25. 25.
    L. I. Kon’kov and N. M. Przhiyalgovskaya, in: Chemistry and Technology of Organic Dyes and Intermediate Products. Abstracts [in Russian], Leningrad (1985), p. 152.Google Scholar
  26. 26.
    B. B. Saflokov, B. S. Lukyanov, A. O. Bulanov, A. V. Metelitsa, V. I. Minkin, V. V. Tkachev, and S. M. Aldoshin, Izv. Akad. Nauk. Ser. Khim., 431 (2002).Google Scholar
  27. 27.
    N. A. Voloshin, A. V. Metelitsa, N. S. Trofimova, A. V. Vdovenko, M. I. Knyazhansky, N. E. Shelepin, and V. I. Minkin, Mol. Cryst. Liq. Cryst., 298, 169 (1997).Google Scholar
  28. 28.
    J. H. Lee, E. S. Park, and C. M. Yoon, Tetrahedron Lett., 42, 8311 (2001).Google Scholar
  29. 29.
    B. S. Lukyanov, L. E. Nivorozhkin, and V. I. Minkin, Khim. Geterotsikl. Soedin., 1700 (1990).Google Scholar
  30. 30.
    M.-J. Lee, B.-W. Yoo, S.-N. Shin, and S.-R. Keum, Dyes and Pigments, 51, 15 (2001).Google Scholar
  31. 31.
    L. Eggers and V. Buß, Tetrahedron Asymmetry, 10, 4485 (1990).Google Scholar
  32. 32.
    Y.-H. Xu, Y.-L. Li, and D.-B. Zhu, Synth. Commun., 32, 1647 (2002).Google Scholar
  33. 33.
    Yu. S. Alekseenko, in: Works of Graduate Students and Candidates of Rostov State University [in Russian], 8, 47 (2002).Google Scholar
  34. 34.
    J.-L. Pozzo, A. Samat, R. Guglielmetti, V. Lokshin, and V. Minkin, Can. J. Chem., 74, 1649 (1996).Google Scholar
  35. 35.
    B. S. Lukyanov, E. N. Shepelenko, V. A. Bren’, and O. A. Bulanov, Khim. Geterotsikl. Soedin., 987 (2000).Google Scholar
  36. 36.
    R. F. Khairutdinov, K. Giertz, J. K. Hust, E. N. Voloshina, N. A. Voloshin, and V. I. Minkin, J. Am. Chem. Soc., 120, 12707 (1998).Google Scholar
  37. 37.
    R. Blonder, E. Katz, I. Willner, V. Wray, and A. F. Buckmann, J. Am. Chem. Soc., 119, 11747 (1997).Google Scholar
  38. 38.
    M. Inouge, K. Akamasu, and N. Nakazumi, J. Am. Chem. Soc., 119, 9160 (1997).Google Scholar
  39. 39.
    M. A. Gal’bershtam, I. B. Lazarenko, N. M. Przhiyalgovskaya, and Zh. F. Sergeev, Khim. Geterotsikl. Soedin., 815 (1976).Google Scholar
  40. 40.
    D. P. Maisuradze, Sh. N. Akhobadze, L. V. Devadze, and K. G. Dzhaparidze, Khim. Geterotsikl. Soedin., 1367 (1982).Google Scholar
  41. 41.
    H. Balli and R. Naef, Dyes and Pigments, 1, 139 (1980).Google Scholar
  42. 42.
    M. M. Krayushkin, V. Z. Shirinyan, and D. M. Nikalin, Izv. Akad. Nauk. Ser. Khim., 687 (2004).Google Scholar
  43. 43.
    O. Rondo, R. Guglielmetti, and J. Metzer, Bull. Soc. Chim. France, 2581 (1971).Google Scholar
  44. 44.
    G. Dumenil, P. Maldonado, R. Guglielmetti, and J. Metzer, Bull. Soc. Chim. France, 817 (1969).Google Scholar
  45. 45.
    R. Guglielmetti, E. Davin-Preteli, and J. Metzer, Bull. Soc. Chim. France, 556 (1971).Google Scholar
  46. 46.
    N. K. Berseneva, E. R. Zakhs, and L. S. Efros, Khim. Geterotsikl. Soedin., 961 (1971).Google Scholar
  47. 47.
    J. R. Haase, US Patent 3 923 524; Chem. Abstr., 85, 64803 (1976).Google Scholar
  48. 48.
    N. F. Haley, J. Org. Chem., 43, 1233 (1978).Google Scholar
  49. 49.
    N. A. Voloshin, Author’s Abstract of Thesis for Candidate of Chemical Sciences [in Russian], Rostov-on-Don (1977).Google Scholar
  50. 50.
    H. Katsuyama and H. Ono, Jpn. Patent 73-34189; Chem. Abstr., 79, 80341f (1973).Google Scholar
  51. 51.
    Yu. M. Chunaev, N. M. Przhiyalgovskaya, L. N. Kurkovskaya, and M. A. Gal’bershtam, Khim. Geterotsikl. Soedin., 1501 (1982).Google Scholar
  52. 52.
    Yu. M. Chunaev, N. M. Przhiyalgovskaya, and M. A. Gal’bershtam, Khim. Geterotsikl. Soedin., 649, (1981).Google Scholar
  53. 53.
    Yu. M. Chunaev, N. M. Przhiyalgovskaya, M. A. Gal’bershtam, and L. N. Kurkovskaya, Khim. Geterotsikl. Soedin., 352 (1982).Google Scholar
  54. 54.
    Yu. M. Chunaev, N. M. Przhiyalgovskaya, M. A. Gal’bershtam, and L. N. Kurkovskaya, Khim. Geterotsikl. Soedin., (1984).Google Scholar
  55. 55.
    K. Reynolds, British Patent 1 315 825; Chem. Abstr., 79, 53316 (1973).Google Scholar
  56. 56.
    G. Zigenner, W. Korsatko, and A. Fichagruber, Monatsh. Chem., 107, 1355 (1976).Google Scholar
  57. 57.
    M. Maguet, R. Guglielmetti, F. Gamier, and J. Poirier, French Patent 7 524 046; Ref. Zh. Khim., 6N38P (1978).Google Scholar
  58. 58.
    M. Maguet, J. Poirier, and R. Guglielmetti, Compt. Rend., 282, 943 (1976).Google Scholar
  59. 59.
    M. Maguet, J. Poirier, and R. Guglielmetti, Bull. Soc. Chim. France, 568 (1978).Google Scholar
  60. 60.
    R. Guglielmetti, G. Rettillion, F. Gamier, and J. Poirier, French Patent 7 833 512; Ref. Zh. Khim., 20N252P (1981).Google Scholar
  61. 61.
    B. S. Lukyanov, L. E. Nivorozhkin, Yu. E. Chernysh, and V. I. Minkin, Khim. Geterotsikl. Soedin., 1031 (1985).Google Scholar
  62. 62.
    B. S. Lukyanov, N. B. Ivanov, L. E. Nivorozhkin, and V. I. Minkin, Khim. Geterotsikl. Soedin., 1253 (1995).Google Scholar
  63. 63.
    V. Metelitsa, O. A. Kozina, S. M. Aldoshin, B. S. Lukyanov, M. I. Knyazansky, and V. I. Minkin, Mol. Cryst. Liq. Cryst., 297, 227 (1997).Google Scholar
  64. 64.
    N. S. Trofimova, Thesis for Candidate of Chemical Sciences [in Russian], Rostov-on-Don (1975).Google Scholar
  65. 65.
    B. S. Lukyanov, Yu. I. Ryabukhin, G. N. Dorofeenko, L. E. Nivorozhkin, and V. I. Minkin, Khim. Geterotsikl. Soedin., 161 (1978).Google Scholar
  66. 66.
    Yu. I. Ryabukhin, Thesis for Candidate of Chemical Sciences [in Russian], Rostov-on-Don (1975).Google Scholar
  67. 67.
    V. V. Ivanitskii, O. G. Nikolaeva, A. V. Metelitsa, N. V. Volbushko, and B. S. Lukyanov, Khim. Geterotsikl. Soedin., 601 (1992).Google Scholar
  68. 68.
    E. V. Bashutskaya, E. R. Zakhs, and L. S. Efros, Khim. Geterotsikl. Soedin., 1697 (1975).Google Scholar
  69. 69.
    B. Ya. Simkin, V. I. Minkin, and L. E. Nivorozhkin, Khim. Geterotsikl. Soedin., 1180 (1978).Google Scholar
  70. 70.
    N. E. Shelepin, N. S. Loseva, L. E. Nivorozhkin, and V. I. Minkin, Khim. Geterotsikl. Soedin., 733 (1971).Google Scholar
  71. 71.
    M. A. Gal’bershtam, A. P. Sisorov, N. M. Przhiyalgovskaya, Yu. P. Strogach, V. A. Barachevskii, I. V. Manakova, and N. N. Suvorov, Khim. Geterotsikl. Soedin., 1205 (1982).Google Scholar
  72. 72.
    B. S. Lukyanov, A. O. Bulanov, A. V. Metelitsa, and Yu. S. Alekseenko, in: Crystallization in Nanosystems. Abstracts of International Scientific Conference [in Russian], Ivanovo (2002), p. 124.Google Scholar
  73. 73.
    N. V. Bolbushko, B. S. Lukyanov, A. V. Metelnitsa, V. I. Minkin, Dokl. Akad. Nauk, 315, 873 (1990).Google Scholar
  74. 74.
    B. S. Lukyanov, N. V. Volbushko, A. L. Nivorozhkin, A. M. Khubutiya, and V. I. Minkin, USSR Inventor’s Certificate 1608191, Byull. Izobr., No. 43 (1990).Google Scholar
  75. 75.
    N. V. Volbushko, B. S. Lukyanov, A. V. Metelitsa, A. L. Nivorozhkin, and V. I. Minkin, USSR Inventor’s Certificate 1608190, Byull. Izobr., No. 43 (1990).Google Scholar
  76. 76.
    R. S. Becker and J. Michl, J. Am. Chem. Soc., 88, 5931 (1996).Google Scholar
  77. 77.
    R. S. Becker and J. Kolc, J. Phys. Chem., 72, 997 (1968).Google Scholar
  78. 78.
    B. S. Lukjanov, M. I. Knjazschanski, J. V. Rewinski, L. E. Nivorozchkin, and V. I. Minkin, Tetrahedron Lett., 2007 (1973).Google Scholar
  79. 79.
    A. Seiiti, K. Hirofumi, and S. Iorietsu, Jpn. Patent 60-54388; Ref. Zh. Khim., 6N255P (1986).Google Scholar
  80. 80.
    A. Seiiti, K. Hirofumi, and S. Iorietsu, US Patent 4565779; Ref. Zh. Khim., 19N362P (1986).Google Scholar
  81. 81.
    A. Seiiti, K. Hirofumi, and S. Iorietsu, Jpn. Patent Appl. 60-177089; Ref. Zh. Khim., 1N391P (1987).Google Scholar
  82. 82.
    B. S. Lukyanov, A. Nivorozhkin, N. B. Ivanov, L. E. Nivorozhkin, and V. I. Minkin, Khim. Geterotsikl. Soedin., 132 (1992).Google Scholar
  83. 83.
    B. S. Lukyanov, A. L. Nivorozhkin, N. B. Ivanov, L. E. Nivorozhkin, and V. I. Minkin, Khim. Geterotsikl. Soedin., 857 (1991).Google Scholar
  84. 84.
    G. Paal, Z. Naturforsch., 29 B, 389 (1974).Google Scholar
  85. 85.
    N. E. Shelepin, L. E. Nivorozhkin, G. N. Dorofeenko, and V. I. Minkin, Khim. Geterotsikl. Soedin., 1313 (1970).Google Scholar
  86. 86.
    R. Gautron, French Patent 450583 (1966); Chem. Abstr., 66, 105903 (1967).Google Scholar
  87. 87.
    R. C. Bertelson, in: G. H. Brown (editor), Photochromism, Wiley Interscience, New York (1971), p. 49.Google Scholar
  88. 88.
    J. A. Hoefnagels and G. I. Smets, US Patent 3696098; Chem. Abstr., 74, 113259 (1971).Google Scholar
  89. 89.
    K. G. Dzhaparidze, D. P. Maisuradze, V. O. Ananiashvili, Sh. A. Akhobadze, and D. L. Lopadze, Second All-Union Conference on Photochemistry. Abstracts [in Russian] (1974), p. 166.Google Scholar
  90. 90.
    Y. Strokach, M. Alfimov, V. Barachevsky, V. Arsenov, and A. Gorelik, Mol. Cryst. Liq. Cryst., 298, 97 (1997).Google Scholar
  91. 91.
    A. N. Flerova, E. L. Zaitseva, and V. A. Krongauz, Khim. Geterotsikl. Soedin., 1631 (1973).Google Scholar
  92. 92.
    J. Filley, M. A. Ibrahim, M. R. Nimlos, A. S. Watt, and D. M. Blake, J. Photochem. Photobiol. A: Chemistry, 117, 193 (1998).Google Scholar
  93. 93.
    M. J. S. Dewar and A. M. Talati, J. Am. Chem. Soc., 51, 1459 (1964).Google Scholar
  94. 94.
    S. R. Keum, Y. K. Choi, M. I. Lee, and S. H. Kim, Dyes and Pigments, 50, 171 (2001).Google Scholar
  95. 95.
    S. R. Keum, Y. K. Choi, K. Y. Rho, S. H. Kirn, and C. M. Yoon, Dyes and Pigments, 44, 19 (2000).Google Scholar
  96. 96.
    S. R. Keum, Y. K. Choi, S. H. Kirn, and C. M. Yoon, Dyes and Pigments, 41, 41 (1999).Google Scholar
  97. 97.
    E. R. Zakhs, R. P. Polyakova, and L. S. Efros, Khim. Geterotsikl. Soedin., 321 (1976).Google Scholar
  98. 98.
    H. Durr, C. Kranz, and H. Kilburg, Mol. Cryst. Liq. Cryst., 298, 89 (1997).Google Scholar
  99. 99.
    Yu. S. Alekseenko, A. O. Bulanov, Yu. Sayapin, A. S. Alekseenko, B. S. Lukyanov, and B. B. Saflokov, Khim. Geterotsikl. Soedin., 1308 (2002).Google Scholar
  100. 100.
    Schonberg, A. Mustafa, and W. Asker, J. Am. Chem. Soc., 73, 2876 (1951).Google Scholar
  101. 101.
    E. B. Knott, J. Chem. Soc., 3038 (1951).Google Scholar
  102. 102.
    T. Evans, A. F. Toth, and P. A. Leermakers, J. Am. Chem. Soc., 89, 5060 (1967).Google Scholar
  103. 103.
    S. S. D’yakonov, A. V. Kiselev, and V. I. Lygin, Zh. Fiz. Khim., 50, 2953 (1976).Google Scholar
  104. 104.
    P. Fruit, R. Cautron, and C. Audic, Bull. Soc. Chim. France, 2237 (1968).Google Scholar
  105. 105.
    A. N. Tolmachev and E. F. Karaban, Ukr. Khim. Zh., 37, 927 (1971).Google Scholar
  106. 106.
    J. Hirshberg, E. B. Knott, and E. Fisher, J. Chem. Soc., 3313 (1955).Google Scholar
  107. 107.
    Cox R. (editor), Non-Silver Photographic Processes, Academic Press (1975), p. 128.Google Scholar
  108. 108.
    S. J. Ohno, Bull. Chem. Soc. Jpn., 633 (1977).Google Scholar
  109. 109.
    L. S. Atabekyan, P. N. Astaf’ev, G. P. Goitman, G. I. Romanovskaya, and A. K. Chibisov, Zh. Fiz. Khim., 56, 1913 (1982).Google Scholar
  110. 110.
    L. S. Atabekyan and A. K. Chibisov, Izv. Akad. Nauk. Ser. Khim., 2243 (1988).Google Scholar
  111. 111.
    A. N. Petrukhin, S. A. Antipin, F. E. Gostev, V. S. Maretsev, A. A. Titov, D. G. Tovbin, A. I. Shienok, V. A. Barachevskii, Yu. P. Strokach, and O. M. Sarkisov, Khim. Fizika, 19, 3 (2000).Google Scholar
  112. 112.
    L. S. Atabekyan and A. K. Chibisov, Zh. Anal. Khim., 38, 1787 (1988).Google Scholar
  113. 113.
    N. Kobayashi, S. Sato, K. Takazawa, K. Ikeda, and R. Hirohashi, Electrochim. Acta, 2309 (1995).Google Scholar
  114. 114.
    H. Goerner and A. Chibisov, J. Chem. Soc. Faraday Trans., 94, 2557 (1998).Google Scholar
  115. 115.
    Chibisov and H. Goerner, Chem. Phys., 237, 425 (1998).Google Scholar
  116. 116.
    J. Zhou, Y. Li, and X. Song, J. Photochem. Photobiol., 87, 37 (1995).Google Scholar
  117. 117.
    J. F. Ortica, D. Levi, P. Brun, R. Guglielmetti, U. Mazzucato, and G. Favaro, J. Photochem. Photobiol., 139, 133 (2001).Google Scholar
  118. 118.
    T. Teranishi, M. Yokoyama, H. Sakamoto, and K. Kimura, in: Abstract of the 3rd International Symposium on Organic Photochromism, Fukuoka, Japan, 1999, 84.Google Scholar
  119. 119.
    E. R. Zakhs, L. A. Zvenigorodskaya, N. G. Leshenyuk, and V. P. Martynova, Khim. Geterotsikl. Soedin., 1320 (1977).Google Scholar
  120. 120.
    M. P. Samoilova and M. A. Gal’bershtam, Khim. Geterotsikl. Soedin., 1065 (1977).Google Scholar
  121. 121.
    N. P. Samoilova, Author’s Abstract of Thesis for Candidate of Chemical Sciences [in Russian], Moscow (1974).Google Scholar
  122. 122.
    M. A. Gal’bershtam, N. N. Artamonova, and N. P. Samoilova, Khim. Geterotsikl. Soedin., 197 (1975).Google Scholar
  123. 123.
    V. D. Arsenev, V. D. Ermakova, M. I. Cherkashin, and P. P. Kisilitsa, Izv. Akad. Nauk. Ser. Khim., 452 (1975).Google Scholar
  124. 124.
    E. L. Zaitseva, A. L. Prokhoda, L. N. Kurkovskaya, R. R. Shiftrina, N. S. Kardash, D. A. Drapkina, and V. A. Krongauz, Khim. Geterotsikl. Soedin., 1362 (1973).Google Scholar
  125. 125.
    S. N. Beshenko, N. A. Zaichenko, V. V. Buzaev, V. D. Ermakova, and M. I. Cherkashin, Izv. Akad. Nauk. SSSR. Ser. Khim., 646 (1978).Google Scholar
  126. 126.
    R. M. Gitina, A. L. Prokhoda, I. P. Yudina, E. L. Zaitseva, and V. A. Krongauz, 1639 (1973).Google Scholar
  127. 127.
    B. S. Lukyanov, L. E. Nivorozhkin, and V. I. Minkin, Khim. Geterotsikl. Soedin., 176 (1993).Google Scholar
  128. 128.
    O. A. Bulanov, B. B. Saflokov, B. S. Lukyanov, V. V. Tkachev, V. I. Minkin, S. M. Aldoshin, and Yu. S. Alekseenko, Khim. Geterotsikl. Soedin., 350 (2003).Google Scholar
  129. 129.
    O. A. Bulanov, B. S. Lukyanov, V. A. Kogan, N. V. Stankevich, and V. V. Lukov, Koordinats. Khim., 28, 49 (2002).Google Scholar
  130. 130.
    O. A. Bulanov, B. S. Lukyanov, V. A. Kogan, and V. V. Lukov, Koordinats. Khim., 29, 709 (2003).Google Scholar
  131. 131.
    A. S. Kholmanskii and K. M. Dyumaev, Usp. Khim., 56, 241 (1987).Google Scholar
  132. 132.
    B. Ya. Simkin, S. P. Makarov, N. G. Furmanova, K. Sh. Karaev, and V. I. Minkin, Khim. Geterotsikl. Soedin., 747 (1984).Google Scholar
  133. 133.
    S. M. Aldoshin and L. O. Atovmyan, Izv. Akad. Nauk. Ser. Khim., 2009 (1985).Google Scholar
  134. 134.
    S. M. Aldoshin, L. O. Atovmyan, and O. A. Kozina, Izv. Akad. Nauk. Ser. Khim., 190 (1987).Google Scholar
  135. 135.
    S. M. Aldoshin, A. S. Kholmanskii, and L. O. Atovmyan, Izv. Akad. Nauk. Ser. Khim., 576 (1986).Google Scholar
  136. 136.
    A. Bulanov, B. Lukyanov, A. Metelitsa, Yu. Alekseenko, M. Lukyanova, and Yu. Sayapin, in: Abstracts of the V International Conference “Atomic and Pulsed Lasers” [in Russian], Tomsk, Russia (2001), p. 39.Google Scholar
  137. 137.
    V. I. Minkin, B. Ya. Simkin, L. E. Nivorozhkin, and B. S. Lukyanov, Khim. Geterotsikl. Soedin., 67 (1974).Google Scholar
  138. 138.
    A. P. Sidorov, Author’s Abstract of Thesis for Candidate of Chemical Sciences [in Russian], 1982.Google Scholar
  139. 139.
    F. L. Fens, US Patent 3346385; Ref. Zh. Khim., 11R688P (1969).Google Scholar
  140. 140.
    E. E. Polymeropoulos and D. Mobius, Ber. Bun. Phys. Chem., 83, 1215 (1979).Google Scholar
  141. 141.
    M. Morin, R. H. Leblane, and J. Gruda, Can. J. Chem., 58, 2038 (1980)Google Scholar
  142. 142.
    A. A. Pankratov and L. B. Maiorova, All-Union Conference on Photochemistry. Abstracts [in Russian], Suzdal’ (1985), p. 355.Google Scholar
  143. 143.
    J. R. Bellobono, B. Narcandalli, E. Seili, and S. Calgari, Photogr. Sci. Eng., 28, 162 (1964).Google Scholar
  144. 144.
    S. Hayashida, H. Sato, and S. Sugavara, J. Chem. Soc. Chem. Commun., 134 (1985).Google Scholar
  145. 145.
    S. Hayashida, H. Sato, and S. Sugavara, Jpn. J. Appl. Phys., 24, 1436 (1985).Google Scholar
  146. 146.
    O. Hisatake and N. Tanaki, Jpn. Patent 28889; Ref. Zh. Khim., 18N726P (1971).Google Scholar
  147. 147.
    T. Yoshida and A. Morinaka, J. Chem. Soc., Chem. Comm., 437 (1986).Google Scholar
  148. 148.
    B. S. Lukyanov, Yu. I. Ryabukhin, A. O. Bulanov, A. V. Metelitsa, and Yu. S. Alekseenko, in: Abstracts of the XX International Conference on Photochemistry (ICP XX) [in Russian], Moscow, Russia, (2001), p. 350.Google Scholar
  149. 149.
    O. A. Bulanov, B. S. Lukyanov, and R. N. Borisenko, III All-Russia Conference “New Achievements in NMR in Structural Investigations”. Abstracts [in Russian], (2000), p. 70.Google Scholar
  150. 150.
    Yu. S. Alexseenko, A. O. Bulanov, A. S. Alexseenko, M. B. Lukyanova, and B. S. Lukyanov, in: Abstracts of the XIV-th Conference “Physical Methods in Coordination and Supramolecular Chemistry” [in Russian], Chisinau, Moldova, p. 1.Google Scholar
  151. 151.
    S. M. Aldoshin, A. O. Bulanov, V. A. Kogan, B. S. Lukyanov, V. I. Minkin, and V. V. Tkachev, Dokl. Akad. Nauk, 390, 51 (2003).Google Scholar
  152. 152.
    G. T. Vasilyuk, S. A. Maskevich, S. G. Podtychenko, and B. S. Lukyanov, in: Abstracts of the XX International Conference on Photochemistry (ICPXX), Moscow, Russia, (2001), p. 563.Google Scholar
  153. 153.
    G. T. Vasilyuk, S. A. Maskevich, S. G. Podtynchenko, V. I. Stepuro, B. S. Lukyanov, and Yu. S. Alekseenko, Zh. Prikl. Spektrosk., 69, 301 (2002).Google Scholar
  154. 154.
    G. T. Vasilyuk and B. S. Lukyanov, in: Abstracts of the 7th International Conference on Solar Energy and Applied Photochemistry (SOLAR ‘03) Combined with 4th International Workshop on Environmental Photochemistry (Enpho ‘03) [in Russian], Luxor, Egypt (2003), p. 85.Google Scholar
  155. 155.
    V. I. Minkin, Chem. Rev., 104, 2751 (2004).PubMedGoogle Scholar
  156. 156.
    D. Funakosi, S. Kisino, and I. Nakatava, Jpn. Patent 56-100887, Ref. Zh. Khim., 12N237P (1982).Google Scholar
  157. 157.
    S. Arakawa and Q. Sato, US Patent 4485168; Ref. Zh. Khim., 13N324P (1985).Google Scholar
  158. 158.
    A. V. Arsenev and S. D. Mal’tsev, Vysokomol. Soed. Kratk. Soobshch., 193 (1986).Google Scholar
  159. 159.
    K. Arakava, H. Kavatsuno, and N. Sato, Jpn. Patent 57-59956; Ref. Zh. Khim., 7N285P (1983).Google Scholar
  160. 160.
    N. Nakadzima, A. Kavasima, and T. Mogama, Jpn. Patent 60-103347; Ref. Zh. Khim., 14N298P (1986).Google Scholar
  161. 161.
    K. Goudjil, US Patent 5730961 (1998). http://www.chemweb.com/databases/patents.Google Scholar
  162. 162.
    M. W. Evans (editor), Modern Nonlinear Optics, Wiley, New York (2001).Google Scholar
  163. 163.
    Ben. I. Feringa (editor), Molecular Switches, Wiley, VCH Weinheim (2001).Google Scholar
  164. 164.
    V. Minkin, Mol. Cryst. Liq. Cryst., 246, 9 (1994).Google Scholar
  165. 165.
    Y. Min, S. Lee, J.-W. Choi, S. Y. Oh, and W. H. Lee, Thin Solid Films, 327 (1998).Google Scholar
  166. 166.
    J. Min, J.-W. Choi, W. H. Lee, and U. R. Kirn, Biosensors & Bioelectronics, 13, 1151 (1998).Google Scholar
  167. 167.
    K. Goudjil, US Patent 5914197 (1999), http://www.chemweb.com/databases/patents.Google Scholar
  168. 168.
    K. Goudjil, US Patent 5581090 (1996), http://www.chemweb.com/databases/patents.Google Scholar
  169. 169.
    K. Goudjil, US Patent 6113813 (2000), http://www.chemweb.com/databases/patents.Google Scholar
  170. 170.
    Ryojiro and M. Takashi, US Patent 5644416 (1997), http://www.chemweb.com/databases/patents.Google Scholar
  171. 171.
    S. Venkatramani and W. Kokonaski, US Patent 5914174 (1999), http://www.chemweb.com/databases/patents.Google Scholar
  172. 172.
    Y.-P. Chan, D. Henry, R. Meyrueix, and J. J. Vial, US Patent 5763511 (1998), http://www.chemweb.com/databases/patents.Google Scholar
  173. 173.
    K. Teijiro and O. Hironori, US Patent 5512423 (1996), http://www.chemweb.com/databases/patents.Google Scholar
  174. 174.
    Eiji and H. Junichi, US Patent 5360699 (1996), http://www.chemweb.com/databases/patents.Google Scholar
  175. 175.
    M. Akira, US Patent 5252742 (1993), http://www.chemweb.com/databases/patents.Google Scholar
  176. 176.
    A. Eiji, M. Kumiko, and S. Masaaki, US Patent 252437 (1993), http://www.chemweb.com/databases/patents.Google Scholar
  177. 177.
    J. Robillard, US Patent 5508145 (1996), http://www.chemweb.com/databases/patents.Google Scholar
  178. 178.
    J. Robillard, US Patent 5434032 (1995), http://www.chemweb.com/databases/patents.Google Scholar
  179. 179.
    A. Eiji and H. Junichi, US Patent 5241075 (1993), http://www.chemweb.com/databases/patents.Google Scholar
  180. 180.
    H. Hiroshi and N. Shinji, US Patent 5708181 (1998), http://www.chemweb.com/databases/patents.Google Scholar
  181. 181.
    M. Saito, K. Musha, Y. Yokoyama, and Y. Yokoyama, Bull. Chem. Soc. Jpn., 76, 2423 (2003).Google Scholar
  182. 182.
    V. Lyubimov, N. L. Zaichenko, and V. S. Marevtsev, J. Photochem. Photobiol. A: Chemistry, 120, 55 (1999).Google Scholar
  183. 183.
    D. G. Western, J. Kirkham, and D. C. Cullen, Biochim. Biophys. Acta, 1428, 463 (1999).PubMedGoogle Scholar
  184. 184.
    Y. Maruo, T. Tanaka, T. Ohyama, and T. Hayashi, Sensors and Actuators, B: Chemical, 57, 135 (1999).Google Scholar
  185. 185.
    K. L. Kompa and R. D. Levine, Proc. Nat. Acad. Sci., 98, 410 (2001).PubMedGoogle Scholar
  186. 186.
    B. Mecheri, R. Baglioni, O. Pieroni, and G. G. Gamiati, Mat. Sci. Eng. C, 23, 893 (2003).Google Scholar
  187. 187.
    G. Favaro, G. Chidichino, P. Formoso, S. Manfredi, U. Mazzucato, and A. Romani, J. Photochem. Photobiol. A: Chemistry, 140, 229 (2001).Google Scholar
  188. 188.
    F. M. Raymo and S. Giordani, Proc. Nat. Acad. Sci., 99, 4941 (2002).Google Scholar
  189. 189.
    M. V. Alfimov, O. A. Fedorova, and S. P. Gromov, J. Photochem. Photobiol. A: Chemistry, 158, 183 (2003).Google Scholar
  190. 190.
    M. Inouye, Mol. Cryst. Liq. Cryst., 246, 169 (1994).Google Scholar
  191. 191.
    M.-A. Su, T. H. Suzuki, J. Hibino, and Y. Kishimoto, Mol. Cryst. Liq. Cryst., 246, 389 (1994).Google Scholar
  192. 192.
    V. I. Minkin, Scientific Thought of the Caucasus [in Russian], 32 (2004).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • B. S. Lukyanov
    • 1
  • M. B. Lukyanova
    • 1
  1. 1.Scientific-Research Institute of Physical and Organic ChemistryRostov State UniversityRostov-on-DonRussia

Personalised recommendations