Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Molecular and morphological evidence for hybrid origin and matroclinal inheritance of an endangered wild rose, Rosa  × pseudobanksiae (Rosaceae) from China

Abstract

The distinction between hybrids and species of hybrid origin is significant for plant diversity conservation. Interspecific hybridization within the genus Rosa is a common phenomenon. Based on field observation, we hypothesized that one previously published species, Rosa pseudobanksiae (endangered category: CR) might be a hybrid. In this study, we utilized molecular approaches involving three nuclear markers and four plastid markers to examine the origin of R. pseudobanksiae. Our evidence shows that it is indeed a natural homoploid hybrid between R. banksiae var. normalis and R. multiflora var. cathayensis, and that gene flows bidirectionally. Our multivariate morphometric analyses provide strong evidence for a matrocliny in R.  × pseudobanksiae individuals. R.  × pseudobanksiae has diverse morphological variations among individuals andshares the overlapped distributions with its parental progenitors. This taxon has not developed into a stabilized and self-evolving lineage with the high sterility in seed sets.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19:716–723

  2. Anderson E, Stebbins GL (1954) Hybridization as an evolutionary stimulus. Evolution 8:378–388

  3. Arnold ML (1992) Natural hybridization as an evolutionary process. Annu Rev Ecol Syst 23:237–261

  4. Arnold ML (1994) Natural hybridization and Louisiana Irises defining a major factor in plant evolution bioscience. Bioscience 44:141–147

  5. Arnold ML, Meyer A (2006) Natural hybridization in primates: One evolutionary mechanism. Zoology 109:261–276

  6. Barrie FR (2006) Report of the general committee 9. Taxon 55:795–800

  7. Cabrera A, Kozik A, Howad W, Arus P, Iezzoni AF, van der Knaap E (2009) Development and bin mapping of a Rosaceae conserved ortholog set COS of markers. BMC Genom 10:562

  8. Chernomor O, von Haeseler A, Minh BQ (2016) Terrace aware data structure for phylogenomic inference from supermatrices. Syst Biol 65:997–1008

  9. Cole D (1956) A revision of the Rosa california complex. Am Midl Nat 55:211–224

  10. Coyne J (1992) Genetics and speciation. Nature 355:511–515

  11. Deng HN, Gao XF, Li XH, Zhou HY (2015) Molecular evidence for hybridization origin of Rosa × sterilis (Rosaceae). J Plant Resour Environ 24:10–17

  12. Evans RC, Alice LA, Campbell CS, Kellogg EA, Dickinson TA (2000) The granule-bound starch synthase (GBSSI) gene in the Rosaceae: multiple loci and phylogenetic utility. Mol Phylogenet Evol 17:388–400

  13. Fagerlind F (1944) Kompatibilität und incompatibilität in der gattung Rosa. Acta Horti Bergiani 13:247–372

  14. Farris JS, Albert VA, Källersjö M, Lipscomb D, Arnold GK (1996) Parsimony jackknifing outperforms neighbor-joining. Cladistics 12:99–124

  15. Felsenstein J (1973) Maximum likelihood and minimum-steps methods for estimating evolutionary trees from data on discrete characters. Syst Zool 22:240–249

  16. Fitzpatrick BM, Ryan ME, Johnson JR, Corush J, Carter ET (2015) Hybridization and the species problem in conservation. Curr Zool 61:206–216

  17. Fougère-Danezan M, Joly S, Bruneau A, Gao XF, Zhang LB (2015) Phylogeny and biogeography of wild roses with specific attention to polyploids. Annals Bot 115:275–291

  18. Fu LK (1992) China plant red data book: rare and endangered plants volume1. Science Press, Beijing

  19. Grimm GW, Denk T (2008) Its evolution in Platanus (Platanaceae): homoeologues, pseudogenes and ancient hybridization. Ann Bot 101:403–419

  20. Gross BL, Rieseberg LH (2005) The ecological genetics of homoploid hybrid speciation. J Hered 96:241–252

  21. Gu CZ (2003) Flora of China, vol 9. Science Press, Beijing, pp 360–455

  22. Guindon S, Gascuel O, Rannala B (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704

  23. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Mol Phylogenet Evol 111:76–86

  24. Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4:9

  25. Harrison JWH (1921) The genus Rosa, its hybridology and other genetical problem. Trans Nat Hist Soc 5:244–298

  26. Hodkinson TR, Chase MW, Takahashi C, Leitch IJ, Bennett MD, Renvoize SA (2002) The use of dna sequencing (ITS and trnL-F), AFLP, and fluorescent in situ hybridization to study allopolyploid Miscanthus (Poaceae). Am J Bot 89:279–286

  27. Iwata H, Kato T, Ohno S (2000) Triparental origin of Damask roses. Gene 259:53–59

  28. Jarvis CE (1992) Seventy-two proposals for the conservation of types of selected Linnaean generic names, the report of subcommittee 3C on the Lectotypification of Linnaean Generic Names. Taxon 41:52–583

  29. Jeffery EC, Longley AE, Penland CWT (1922) Polyploidy, polyspory and hybridism in the angiosperms. Science 12:517–518

  30. Jian HY, Zhang T, Wang QG, Li SB, Zhang H, Tang KX (2012) Karyological diversity of wild Rosa in Yunnan, southwestern China. Genet Resour Crop Evolut 60:115–127

  31. Kim JK, Ahn DC, Oh HJ, Kim KH, Choi YM, Oh SY, Kang NJ, Jeong BR, Kim ZH, Park YH (2010) Skewed inheritance of EST-SSR alleles in reciprocal crosses of cut roses. Kor J Hortic Sci Technol 28:618–626

  32. Lanfear R, Calcott B, Kainer D, Mayer C, Stamatakis A (2014) Selecting optimal partitioning schemes for phylogenomic datasets. BMC Evol Biol 14:82

  33. Lewis WH (2016) Nomenclatural novelties in Rosa (Rosaceae) subgenus Rosa recognized in North America. Novon 25:22–46

  34. Li SQ, Zhang C, Gao XF (2017) Estimation of nuclear DNA content of 17 Chinese wild rose species by flow cytometry. Plant Sci J 35:558–565

  35. Liu JQ (2016) The integrative species concept’ and ‘species on the speciation way. Biodivers Sci 24:1004–1008

  36. Liu B, Abbott RJ, Lu Z, Tian B, Liu J (2014) Diploid hybrid origin of Ostryopsis intermedia (Betulaceae) in the Qinghai-Tibet Plateau triggered by Quaternary climate change. Mol Ecol 23:3013–3027

  37. Matthews JR (1920) Hybridism and classification in the genus Rosa. New Phytol 19:153–171

  38. Melville R (1967) The problem of classification in the genus Rosa. Bulletin du Jardin Botanique National de Belgique 37:39–44

  39. Mercure M, Bruneau A (2008) Hybridization between the escaped Rosa rugose (Rosaceae) and native R. blanda in eastern North America. Am J Bot 95:597–607

  40. Mikanagia Y, Ohbab H (2011) Rosa × mikawamontana Mikanagi and H. Ohba (Rosaceae), a new hybrid between R. sambucina and R. paniculigera from Aichi Prefecture, Central Japan. J Jpn Bot 86:240–252

  41. Miller MA, Pfeiffer W, Schwartz T (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In: Proceedings of the gateway computing environments workshop (GCE), New Orleans, pp 1–8

  42. Motulsky H (1999) Analyzing data with GraphPad prism. GraphPad Software Inc, San Diego

  43. Muller K (2006) Incorporating information from length-mutational events into phylogenetic analysis. Mol Phylogenet Evol 38:667–676

  44. Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ (2015) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 32:268–274

  45. Ohba H, Akiyama S, Mikanagi Y (2007) Interspecific hybrids between the Japanese species in Rosa Section Synstylae (Rosaceae). J Jpn Bot 82:45–53

  46. Orr HA (1997) Haldane’s rule. Annu Rev Ecol Syst 28:195–218

  47. Posada D (2008) jModelTest: phylogenetic model averaging. Mol Biol Evol 25:1253–1256

  48. Power DA (1991) Conservation of hybrid plants. Science 254:779–780

  49. Rambaut A, Drummond AJ, Xie D, Baele G, Suchard MA (2018) Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst Biol 67:901–904

  50. Rehder A (1962) Manual of cultivated trees and shrubs hardy in North America. Macmillan, Harvard Uiversity, New York

  51. Richard JA, Matthew JH, Simon JH, Adrian CB (2010) Homoploid hybrid speciation in action. Taxon 59:1375–1386

  52. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

  53. Sang T (2002) Utility of low-copy nuclear gene sequences in plant phylogenetics. Crit Rev Biochem Mol Biol 37:121–147

  54. Simmons MP, Ochoterena H (2000) Gaps as characters in sequence-based phylogenetic analyses. Syst Biol 49:369–381

  55. Sokal PR, Sneath PHA (1993) Principles of numerical taxonomy. W. H. Freeman, San Francisco

  56. Soltis PS, Soltis DE (2009) The role of hybridization in plant speciation. Annu Rev Plant Biol 60:561–588

  57. Stamatakis A, Hoover P, Rougemont J (2008) A rapid bootstrap algorithm for the RAxML Web servers. Syst Biol 57:758–771

  58. Stephens M, Smith NJ, Donnelly P (2001) A new statistical method for haplotype reconstruction from population data. Am J Hum Genet 68:978–989

  59. Swofford D (2002) PAUP 4.0 b10: Phylogenetic analysis using parsimony. Sinauer Associates, Sunderland

  60. Thompson JD, Higgins DG (1994) Clustal W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

  61. Vaidya G, Lohman DJ, Meier R (2011) SequenceMatrix: concatenation software for the fast assembly of multi-gene datasets with character set and codon information. Cladistics 27:171–180

  62. von Holdt BM, Pollinger JP, Earl DA, Knowles JC, Boyko AR, Parker H, Geffen E, Pilot M, Jedrzejewski W, Jedrzejewska B, Sidorovich V, Greco C, Randi E, Musiani M, Kays R, Bustamante CD, Ostrander EA, Novembre J, Wayne RK (2011) A genome-wide perspective on the evolutionary history of enigmatic wolf-like canids. Genome Res 21:1294–1305

  63. Wayne RK, Jenks SM (1991) Mitochondrial DNA analysis implying extensive hybridization of the endangered red wolf Canis rufus. Nature 351:565–568

  64. Wissemann V (2000) Epicuticular wax morphology and the taxonomy of Rosa (section Caninae, subsection Rubiginosae). Plant Syst Evol 221:107–112

  65. Wissemann V, Riedel M, Riederer M (2006) Matroclinal inheritance of cuticular waxes in reciprocal hybrids of Rosa species, sect. Caninae (Rosaceae). Plant Syst Evol 263:181–190

  66. Zhu ZM, Gao XF (2015) Molecular evidence for the hybrid origin of Rosa lichiangensis (Rosaceae). Phytotaxa 222:221

  67. Zhu ZM, Gao XF, Fougere-Danezan M (2015) Phylogeny of Rosa sections Chinenses and Synstylae (Rosaceae) based on chloroplast and nuclear markers. Mol Phylogenet Evol 87:50–64

Download references

Acknowledgements

The research was partially supported by the National Natural Science Foundation of China (Grant No. 31670192); the Science and Technology Basic Work (Grant No. 2017FY100104) to X.-F.G. We also thank Zheng-Zhi Jiang for R.  × pseudobanksiae collection and Li-Bing Zhang for manuscript revision.

Author information

Correspondence to Xin-Fen Gao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 28 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Li, S., Zhang, Y. et al. Molecular and morphological evidence for hybrid origin and matroclinal inheritance of an endangered wild rose, Rosa  × pseudobanksiae (Rosaceae) from China. Conserv Genet 21, 1–11 (2020). https://doi.org/10.1007/s10592-019-01227-8

Download citation

Keywords

  • Hybrids
  • Hybrid origin
  • Matrocliny
  • Progenitors
  • Rosa  × pseudobanksiae
  • Wild roses