Advertisement

Conservation Genetics

, Volume 20, Issue 5, pp 1009–1022 | Cite as

Increased habitat fragmentation leads to isolation among and low genetic diversity within populations of the imperiled Kentucky Arrow Darter (Etheostoma sagitta spilotum)

  • Rebecca E. BlantonEmail author
  • Mollie F. Cashner
  • Matthew R. Thomas
  • Stephanie L. Brandt
  • Michael A. Floyd
Research Article

Abstract

The Kentucky Arrow Darter (Etheostoma sagitta spilotum) is federally listed as threatened and known only from five tributary systems in the Kentucky River system, Kentucky, USA. Recent surveys revealed considerable population decline, with individuals detected in only 45% of known historical localities. Impacts of these declines on the genetic structure of E. s. spilotum may be exacerbated by limited dispersal capabilities and small initial population size resulting in high levels of isolation among extant populations. Long standing genetic isolation may also be evident in contemporary genetic signatures; populations that have undergone historic isolation may be prime candidates for intensive conservation efforts. To address contemporary and historic genetic isolation, we generated genotypic (11 microsatellite loci) and mtDNA sequence (ND2 gene) data from multiple locations spanning the taxon’s range. We recovered seven haplotypes with low divergence levels, shared among and within multiple Kentucky River tributary systems, indicating absence of long-standing isolation among localities examined. In contrast, microsatellite data suggested all nine populations are functionally isolated, with little to no admixture among populations, even among those within the same tributary system. The drastic decline of E. s. spilotum populations has likely combined with limited dispersal, resulting in extensive contemporary genetic isolation among extant populations. Conservation management plans to enhance stability and maintain survivability of E. s. spilotum must address the severe genetic isolation identified here and work towards increasing gene flow among extant populations.

Keywords

Fish Allelic diversity Effective population size Population structure Microsatellites Phylogeography 

Notes

Acknowledgements

Funding and resources provided through the Kentucky Department of Fish and Wildlife Resources (KDFWR), US Fish and Wildlife Service (USFWS) Section 6 funding, Austin Peay State University (APSU), and the APSU Center of Excellence for Field Biology. We thank S. Carr (KDFWR) for invaluable assistance facilitating contracts and other technical issues throughout the project; J. Johansen (TTU, APSU) for maps and georeferencing; S. Woltmann and (APSU) J. Johansen for helpful discussion related to data analyses and interpretation and comments on the manuscript; and E. Bloom (APSU), M. Lewis (APSU), K. Pilcher (APSU), and J. Johansen for lab assistance. S. Harrel (EKU) assisted in tissue collections. The findings and conclusions in this article are those of the authors and do not necessarily represent the views of the United States Fish and Wildlife Service.

Supplementary material

10592_2019_1188_MOESM1_ESM.tif (114.8 mb)
Supplementary material 1 (TIFF 117535 kb). Online Resource 1. Geographic distribution of Kentucky Arrow Darter (KAD), Etheostoma sagitta spilotum. Circles represent all historical localities known for the species; colors reflect presence (green) or absence (red) at a site as a result of recent survey efforts (2007-2013) to document occurrence (modified from USFWS 2013). Publicly owned lands are shown to demonstrate E. s. spilotum occurrence is now primarily restricted to these areas where mining activities, for example, have been less pervasive
10592_2019_1188_MOESM2_ESM.docx (17 kb)
Supplementary material 2 (DOCX 16 kb). Online Resource 2.. Locality information for populations examined in assessments of genetic diversity of the Kentucky Arrow Darter, Etheostoma sagitta spilotum. All sites were located in the Kentucky River system of Kentucky (Fig. 1). The population identifier (Pop. ID) number corresponds to those used throughout the document. SFK = South Fork Kentucky River; MFK = Middle Fork Kentucky River; NFK = North Fork Kentucky River
10592_2019_1188_MOESM3_ESM.eps (10.9 mb)
Supplementary material 3 (EPS 11161 kb). Online Resource 3. Population number (K) inferred from STRUCTURE analysis of Kentucky Arrow Darter, Etheostoma sagitta spilotum: (A) mean Log Likelihood; and (B) ΔK estimates. Both recover nine populations

References

  1. Amos JN, Harrisson KA, Radford JQ, White M, Newell G, Mac Nally R, Sunnucks P, Pavlova A (2014) Species- and sex-specific connectivity effects of habitat fragmentation in a suite of woodland birds. Ecology 95:1556–1568.  https://doi.org/10.1890/13-1328.1 CrossRefPubMedGoogle Scholar
  2. Austin JD, Jelks HL, Tate B, Johnson AR (2011) Jordan F (2011) Population genetic structure and conservation genetics of threatened Okaloosa darters (Etheostoma okaloosae). Conserv Genet 12:981–989.  https://doi.org/10.1007/s10592-011-0201-5 CrossRefGoogle Scholar
  3. Baxter J (2015) Distribution, movement, and ecology of Etheostoma spilotum (Gilbert), the Kentucky Arrow Darter, in Gilberts Big Creek and Elisha Creek, Red Bird River Basin, Clay and Leslie Counties, Kentucky. Unpublished M.S. Thesis, Eastern Kentucky University, Richmond, KYGoogle Scholar
  4. Belkhir K, Porsa P, Chikhi L, Raufaste N, Bonhomme F (2004) GENETIX 4.05, logical sous Windows TM our la genetique des populations. Laboratorire Genome, Populations, Interactions, CNRS UMR 5171, Universite de Montpellier II, Montpellier, FranceGoogle Scholar
  5. Beneteau CL, Mandrak NE (2009) Heath DD (2009) The effects of river barriers and range expansion on the population genetic structure and stability in greenside darter (Etheostoma blennioides) populations. Conserv Genet 10:477–487.  https://doi.org/10.1007/s10592-008-9627-9 CrossRefGoogle Scholar
  6. Blakney JR, Loxterman JL, Keeley ER (2014) Range-wide comparisons of northern Leatherside Chub populations reveal historical and contemporary patterns of genetic variation. Conserv Genet 2014(15):757–770.  https://doi.org/10.1007/s10592-014-0576-1 CrossRefGoogle Scholar
  7. Bohanak AJ (1999) Dispersal, gene flow, and population structure. Q Rev Biol 74:21–45CrossRefGoogle Scholar
  8. Boutin-Ganache I, Raposo M, Raymond M, Deschepper CF (2001) M13-tailed primers improve the readability and usability of microsatellite analyses performed with two different allele-sizing methods. Biotechniques 31:24–28.  https://doi.org/10.2144/01311bm02 CrossRefPubMedGoogle Scholar
  9. Burr BM, Warren ML Jr (1986) A distributional atlas of Kentucky fishes, vol 4. Kentucky Nature Preserves Commission, FrankfortGoogle Scholar
  10. Cabin RJ, Mitchell RJ (2000) To Bonferroni or not to Bonferroni: when and how are the questions. Bull Ecol Soc Am 81(3):246–248Google Scholar
  11. Castelloe J, Templeton AR (1994) Root probabilities for intraspecific gene trees under neutral coalescent theory. Mol Phylogenet Evol 3:102–113.  https://doi.org/10.1006/mpev.1994.1013 CrossRefPubMedGoogle Scholar
  12. Chiucchi JE, Gibbs HL (2010) Similarity of historical and contemporary gene flow among highly fragmented populations of an endangered rattlesnake. Mol Ecol 19:5345–5358.  https://doi.org/10.1111/j.1365-294X.2010.04860.x CrossRefPubMedGoogle Scholar
  13. Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2014PubMedPubMedCentralGoogle Scholar
  14. Coulon A, Cosson JF, Angibault JM, Cargnelutti F, Galan M, Morellet N, Petit E, Aulagnier S, Hewison AJM (2004) Landscape connectivity influences gene flow in a roe deer population inhabiting a fragmented landscape: an individual-based approach. Mol Ecol 13:2841–2850.  https://doi.org/10.1111/j.1365-294X.2004.02253.x CrossRefPubMedGoogle Scholar
  15. Davis DJ, Wieman AC, Berendzen PB (2015) The influence of historical and contemporary landscape variables on the spatial genetic structure of the Rainbow Darter (Etheostoma caeruleum) in tributaries of the upper Mississippi River. Conserv Genet 16:167–179.  https://doi.org/10.1007/s10592-014-0649-1 CrossRefGoogle Scholar
  16. DeWoody JA, Avise JC (2000) Microsatellite variation in marine, freshwater and anadramous fishes compared with other animals. Fish Biol 56:461–473.  https://doi.org/10.1111/j.1095-8649.2000.tb00748.x CrossRefGoogle Scholar
  17. Di Rienzo A, Peterson AC, Garza JC, Valdes AM, Slatkin M, Freimer NB (1994) Mutational processes of simple-sequence repeat loci in human populations. Proc Natl Acad Sci 91:3166–3170CrossRefPubMedGoogle Scholar
  18. Do C, Waples RS, Peel D, Macbeth GM, Tillett BJ, Ovenden JR (2014) NeEstimator V2: re-implementation fo software for the estimation of contemporary effective population size (Ne) from genetic data. Mol Ecol Resour 14:209–214.  https://doi.org/10.1111/1755-0998.12157 CrossRefPubMedGoogle Scholar
  19. Earl DA, vonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361.  https://doi.org/10.1007/s12686-011-9548-7 CrossRefGoogle Scholar
  20. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620.  https://doi.org/10.1111/j.1365-294X.2005.02553.x CrossRefPubMedPubMedCentralGoogle Scholar
  21. Ewers RM, Didham RK (2006) Confounding factors in the detection of species response to habitat fragmentation. Biol Rev 81:117–142.  https://doi.org/10.1017/S1464793105006949 CrossRefPubMedGoogle Scholar
  22. Fagan WF (2002) Connectivity, fragmentation, and extinction risk in dendriditic metapopulations. Ecology 83:3243–3249.  https://doi.org/10.1890/0012-9658(2002)083%5b3243:CFAERI%5d2.0.CO;2 CrossRefGoogle Scholar
  23. Fagan WF, Unmack P, Burgess C, Minckley WL (2002) Rarity, fragmentation, and extinction risk in desert fishes. Ecology 83:3250–3256.  https://doi.org/10.1890/0012-9658(2002)083%5b3250:RFAERI%5d2.0.CO;2 CrossRefGoogle Scholar
  24. Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Annu Rev Ecol Evol Sys 34:487–515.  https://doi.org/10.1146/annurev.ecolsys.34.011802.132419 CrossRefGoogle Scholar
  25. Falush D, Stephens M, Pritchard JK (2003) Influence of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587PubMedPubMedCentralGoogle Scholar
  26. Falush D, Stephens M, Pritchard JK (2007) Inference of population structure using multilocus genotype data: dominant markers and null alleles. Mol Ecol Notes 7:574–578.  https://doi.org/10.1111/j.1471-8286.2007.01758.x CrossRefPubMedPubMedCentralGoogle Scholar
  27. Fluker BL, Kuhajda BR, Lang NJ, Harris PM (2010) Low genetic diversity and small long-term population sizes in the spring endemic Watercress Darter, Etheostoma nuchale. Conserv Genet 11:2267–2279.  https://doi.org/10.1007/s10592-010-0111-y CrossRefGoogle Scholar
  28. Frankham R (1998) Inbreeding and extinction: island populations. Conserv Biol 12:665–675.  https://doi.org/10.1111/j.1523-1739.1998.96456.x CrossRefGoogle Scholar
  29. Frankham R (2005) Genetics and extinction. Biol Conserv 126:131–140.  https://doi.org/10.1016/j.biocon.2005.05.002 CrossRefGoogle Scholar
  30. Frankham R, Lees K, Montgomery ME, England PR, Lowe EH, Briscoe DA (1999) Do population size bottlenecks reduce evolutionary potential? Anim Conserv 2:255–260.  https://doi.org/10.1111/j.1469-1795.1999.tb00071.x CrossRefGoogle Scholar
  31. Frankham R, Ballou JD, Briscoe DA (2002) Introduction to Conservation Genetics. Cambridge University Press, Cambridge UKCrossRefGoogle Scholar
  32. Frankham R, Bradshaw CJA, Brook BW (2014) Genetics in conservation management: revised recommendations for the 50/500 rules, Red List criteria and population viability analyses. Biol Conserv 170:56–63.  https://doi.org/10.1016/j.biocon.2013.12.036 CrossRefGoogle Scholar
  33. Fu YX (1997) Statistical tests of neutrality of mutations against population growth, hitchhicking and background selection. Genetics 147:915–925PubMedPubMedCentralGoogle Scholar
  34. Gabel JM, Dakin EE, Freeman BJ, Porter BA (2008) Isolation and identification of eight microsatellite loci in the Cherokee Darter (Etheostoma scotti) and their variability in other members of genera Etheostoma, Ammocrypta, and Percina. Mol Ecol Resour 8:149–151.  https://doi.org/10.1111/j.1471-8286.2007.01903.x CrossRefPubMedGoogle Scholar
  35. George AL, Kuhajda BR, Williams JD, Cantrell MA, Rakes PL, Shute JR (2009) Guidelines for propagation and translocation for freshwater fish conservation. Fisheries 34:529–545.  https://doi.org/10.1577/1548-8446-34.11.529 CrossRefGoogle Scholar
  36. Ginson R, Walter RP, Mandrak NE, Beneteau CL, Heath DD (2015) Hierarchical analysis of genetic structure in the habitat-specialist Eastern Sand Darter (Ammocrypta pellucida). Ecol Evol 5:695–708.  https://doi.org/10.1002/ece3.1392 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Gotelli NJ, Taylor CM (1999) Testing metapopulation models with stream-fish assemblages. Evol Ecol Res 1:835–845Google Scholar
  38. Hartl DL, Clark AG (1997) Principles of Population Genetics, 3rd edn. Sinauer Associates Inc., Sunderland, MAGoogle Scholar
  39. Hedgecock D (1994) Does variance in reproductive success limit effective population size of marine organisms? In: Beaumont A (ed) Genetics and Evolution of Aquatic Organisms. Chapman & Hall, London, pp 122–134Google Scholar
  40. Hendrick PW (1995) Gene flow and genetic restoration: the Florida Panther as a case study. Conserv Biol 5:996–1007.  https://doi.org/10.1046/j.1523-1739.1995.9050988.x-i1 CrossRefGoogle Scholar
  41. Hitt NP, Floyd M, Compton M, McDonald K (2016) Threshold responses of Blackside Dace (Chrosomus cumberlandensis) and Kentucky Arrow Darter (Etheostoma spilotum) to stream conductivity. Southeast Nat 15:41–60.  https://doi.org/10.1656/058.015.0104 CrossRefGoogle Scholar
  42. Hollinsgworth P, Near TJ (2009) Temporal diversification and microendemism in Eastern Highland endemic barcheek darters (Percidae: Etheostomatinae). Evolution 63:228–243.  https://doi.org/10.1111/j.1558-5646.2008.00531.x CrossRefGoogle Scholar
  43. Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801–1806.  https://doi.org/10.1093/bioinformatics/btm233 CrossRefPubMedGoogle Scholar
  44. Jelks HL, Walsh SJ, Burkhead NM, Contreras-Balderas S et al (2008) Conservation status of imperiled North American freshwater and diadromous fishes. Fisheries 33:372–407CrossRefGoogle Scholar
  45. Jensen JL, Bohonak AJ, Kelley ST (2005) Isolation by distance, web service. BMC Genet 6:1–6.  https://doi.org/10.1186/1471-2156-6-13 CrossRefGoogle Scholar
  46. KDFWR (2005) Kentucky’s Comprehensive Wildlife Conservation Strategy. KDFWR, Frankfort, Kentucky. http://fw.ky.gov/kfwis/stwg/
  47. Kocher TD, Conroy JA, McKaye KR, Stauffer JR, Lockwood SF (1995) Evolution of NADH dehydrogenase subunit 2 in East African cichlid fish. Mol Phylogenet Evol 4:420–432CrossRefPubMedGoogle Scholar
  48. Kottelat M, Freyhof J (2007) Handbook of European freshwater fishes. Kottelat, BerlinGoogle Scholar
  49. Krabbenhoft TJ, Rhode FC, Leibman AN, Quattro JM (2008) Concordant mitochondrial and nuclear DNA partitions define evolutionary significant units in the imperiled Pinewoods Darter, Etheostoma mariae (Pisces: Percidae). Copeia 2008:909–915CrossRefGoogle Scholar
  50. Kuehne RA, Barbour RW (1983) The American Darters. The University of Kentucky Press, LexingtonGoogle Scholar
  51. Lang NJ, Echelle AA (2011) Novel phylogeographic patterns in a lowland fish, Etheostoma proeliare (Percidae). Southeast Nat 10:133–144CrossRefGoogle Scholar
  52. Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–11452.  https://doi.org/10.1093/bioinformatics/btp187 CrossRefPubMedGoogle Scholar
  53. Lui J, Wilson M, Hu G, Liu J, Wu J, Yu M (2018) How does habitat fragmentation affect the biodiversity and ecosystem functioning relationship? Landsc Ecol 33(3):341–1352.  https://doi.org/10.1007/s10980-018-0620-5 CrossRefGoogle Scholar
  54. Luikart G, Cornuet J (1998) Empirical evaluation of a test for identifying recently bottlenecked populations from allele frequency data. Conserv Biol 12:228–237.  https://doi.org/10.1111/j.1523-1739.1998.96388.x CrossRefGoogle Scholar
  55. McCraney WT, Goldsmith G, Jacobs DK, Kinzinger AP (2010) Rampant drift in artificially fragmented populations of the endangered Tidewater Goby (Eucyclogobius newberryi). Mol Ecol 19:3315–3327.  https://doi.org/10.1111/j.1365-294X.2010.04755.x CrossRefPubMedGoogle Scholar
  56. Morales P, Vila I, Poulin E (2011) Genetic structure in remanant populations of an endangered cypriniodontid fish Orestias ascotanensis, edemic to the Ascotán salt pan of the Altiplano. Conserv Genet 12:1639–1643.  https://doi.org/10.1007/s10592-011-0245-6 CrossRefGoogle Scholar
  57. Newman D, Pilson D (1997) Increased probability of extinction due to decreased genetic effective population size: experimental populations of Clarkia pulchella. Evolution 51:354–362.  https://doi.org/10.1111/j.1558-5646.1997.tb02422.x CrossRefPubMedGoogle Scholar
  58. Oosterhout CV, Hutchinson WF, Wills DP, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Resour 4:535–538.  https://doi.org/10.1111/j.1471-8286.2004.00684.x CrossRefGoogle Scholar
  59. Page LM (1983) Handbook of Darters. Publications Inc, NeptuneGoogle Scholar
  60. Pavlova A, Beheregaray LB, Coleman R, Gilligan D, Harrisson KA, Ingram BA, Kearns J, Lamb AM, Lintermans M, Lyon J, Nguyen TTT, Sasaki M, Tonkin Z, Yen JDL, Sunnucks P (2017) Severe consequences of habitat fragmentation on genetic diversity of an endangered Australian freshwater fish: a call for assisted gene flow. Evol Appl 10:531–550.  https://doi.org/10.1111/eva.12484 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Resour 6:288–295.  https://doi.org/10.1111/j.1471-8286.2005.01155.x CrossRefGoogle Scholar
  62. Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research -an update. Bioinformatics 28:2537–2539.  https://doi.org/10.1093/bioinformatics/bts460 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Peery MZ, Kirby R, Reid BN, Stoelting R, Doucet-Beer E, Robinson S, Vasquez-Carrillo C, Pauli JN, Paslboll J (2012) Reliability of genetic bottleneck tests for detecting recent population declines. Mol Ecol 21:3403–3418.  https://doi.org/10.1111/j.1365-294X.2012.05635.x CrossRefPubMedGoogle Scholar
  64. Porter BA, Fiumera AC, Avise JC (2002) Egg mimicry and allopaternal care: two mate-attracting tactics by which nesting striped darter (Etheostoma virgatum) males enhance reproductive success. Behav Ecol Sociobiol 51:350–359.  https://doi.org/10.1007/s00265-002-0456-4 CrossRefGoogle Scholar
  65. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedPubMedCentralGoogle Scholar
  66. Ramos-Onsins SE, Rozas J (2002) Statistical properties of new neutrality tests against population growth. Mol Biol Evol 23:1642.  https://doi.org/10.1093/oxfordjournals.molbev.a004034 CrossRefGoogle Scholar
  67. Reed DH, Frankham R (2003) Correlation between fitness and genetic diversity. Conserv Biol 17:230–237.  https://doi.org/10.1046/j.1523-1739.2003.01236.x CrossRefGoogle Scholar
  68. Roberts JH, Angermeier PL, Hallerman EM (2013) Distance, dams, and drift: what structures populations of an endangered benthic stream fish? Freshw Biol 58:2050–2064.  https://doi.org/10.1111/fwb.12190 CrossRefGoogle Scholar
  69. Robinson JD, Simmons JW, Williams AS, Moyer GR (2013) Population structure and genetic diversity in the endangered bluemask darter (Etheostoma akatulo). Conserv Genet 14:79–92.  https://doi.org/10.1007/s10592-012-0427-x CrossRefGoogle Scholar
  70. Rogers AR, Harpending H (1992) Population growth makes waves in the distribution of pairwise genetic differences. Mol Biol Evol 9:552–569.  https://doi.org/10.1093/oxfordjournals.molbev.a040727 CrossRefPubMedGoogle Scholar
  71. Rosenberg NA (2004) Distruct: a program for the graphical display of population structure. Mol Ecol Resour 4:137–138.  https://doi.org/10.1046/j.1471-8286.2003.00566.x CrossRefGoogle Scholar
  72. Rousset F (2008) GENEPOP’007: a complete re-implementation of the GENEPOP software for Windows and Linux. MolEcol Resour 8:103–106.  https://doi.org/10.1111/j.1471-8286.2007.01931.x CrossRefGoogle Scholar
  73. Savage WK, Fremier AK, Shaffer BH (2010) Landscape genetics of alpine Sierra Nevada salamanders reveal extreme population subdivision in space and time. Mol Ecol 19:3301–3314.  https://doi.org/10.1111/j.1365-294X.2010.04718.x CrossRefPubMedGoogle Scholar
  74. Sommer S (2005) The importance of immune gene variability (MHC) in evolutionary ecology and conservation. Front Zool 2:16–33.  https://doi.org/10.1186/1742-9994-2-16 CrossRefPubMedPubMedCentralGoogle Scholar
  75. Spielman D, Brook BW, Frankham R (2004) Most species are not driven to extinction before genetic factors impact them. Proc Natl Acad Sci 101:15261–15264.  https://doi.org/10.1073/pnas.0403809101 CrossRefPubMedGoogle Scholar
  76. Sterling KA, Reed DH, Noonan BP, Warren ML (2012) Genetic effects of habitat fragmentation and population isolation on Etheostoma raneyi (Percidae). Conserv Genet 13:859–872.  https://doi.org/10.1007/s10592-012-0335-0 CrossRefGoogle Scholar
  77. Switzer JF, Welsh SA, King TL (2008) Microsatellite DNA primers for the Candy Darter, Etheostoma osburni, and Variegate Darter, Etheostoma variatum, and cross-species amplification in other darters (Percidae). Mol Ecol Resour 8:335–338.  https://doi.org/10.1111/j.1471-8286.2007.01946.x CrossRefPubMedGoogle Scholar
  78. Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595PubMedPubMedCentralGoogle Scholar
  79. Templeton AR, Crandall KA, Sing CF (1992) A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. III. Cladogram estimation. Genetics 132:619–633PubMedPubMedCentralGoogle Scholar
  80. Thomas MR (2008) Distribution and status of the Kentucky Arrow Darter (Etheostoma sagitta spilotum). Project Report, Kentucky Department of Fish and Wildlife Resources, Frankfort, KY, State and Tribal Wildlife Grant T-9-RSI-1Google Scholar
  81. Turner TF (2001) Comparative study of larval transport and gene flow in darters. Copeia 3:766–774CrossRefGoogle Scholar
  82. Turner TF, Robison HW (2006) Genetic diversity of the Caddo Madtom, Noturus taylori, with comments on factors that promote genetic divergence in fishes endemic to the Ouachita Highlands. Southwest Nat 51:338–345.  https://doi.org/10.1894/0038-4909(2006)51%5b338:GDOTCM%5d2.0.CO;2 CrossRefGoogle Scholar
  83. Turner TF, Trexler JC (1998) Ecological and historical associations of gene flow in darters (Teleostei: Percidae). Evolution 52:1781–1801.  https://doi.org/10.1111/j.1558-5646.1998.tb02256.x CrossRefPubMedGoogle Scholar
  84. Turner TF, Trexler JC, Kuhn DN, Robison HW (1996) Life history variation and comparative phylogeography of darters (Pisces: Percidae) from the North American Central Highlands. Evolution 50:2023–2036.  https://doi.org/10.1111/j.1558-5646.1996.tb03589.x CrossRefPubMedGoogle Scholar
  85. USFWS (2010) Endangered and threatened wildlife and plants; review of native species that are candidates for listing as endangered or threatened; annual notice of findings on resubmitted petitions; annual description of progress on listing actions. Fed Reg 75:69222–69294Google Scholar
  86. USFWS (2012) Genetic assessment of Abrams Creek reintroduction program for the federally threatened Yellowfin Madtom (Noturus flavipinnis), and endangered Smoky Madtom (Noturus baileyi) and Citico Darter (Etheostoma sitikuense). Project Report, Warm Springs, GA USFWS Conservation Genetics LabGoogle Scholar
  87. USFWS (2013) Range-wide conservation strategy for the Kentucky Arrow Darter (Etheostoma s. spilotum Gilbert). Frankfort, KentuckyGoogle Scholar
  88. USFWS (2015) Endangered and threatened wildlife and plants; threatened species status for Kentucky Arrow Darter with 4(d) rule. Fed Reg 80:60962–60988Google Scholar
  89. Waples RS, Do C (2008) LDNE: a program for estimating effective population size from data on linkage disequilibrium. Mol Ecol Resour 8:753–756.  https://doi.org/10.1111/j.1755-0998.2007.02061.x CrossRefPubMedGoogle Scholar
  90. Waples RS, England PR (2011) Estimating contemporary effective population size on the basis of linkage disequilibrium in the face of migration. Genetics 189:633–644.  https://doi.org/10.1534/genetics.111.132233 CrossRefPubMedPubMedCentralGoogle Scholar
  91. Warren ML Jr, Burr BM, Walsh SJ et al (2000) Diversity, distribution, and conservation status of the native freshwater fishes of the Southern United States. Fisheries 25:7–31CrossRefGoogle Scholar
  92. Weeks AR, Sgro CM, Young AG, Frankham R, Mitchell NJ, Miller KA, Byrne M, Coates DJ, Elderidge MDB, Sunnucks P, Breed MF, James EA, Hoffmann AA (2011) Assessing the benefits and riskds of translocations in changing environments: a genetic perspective. Evol Appl 4:709–725.  https://doi.org/10.1111/j.1752-4571.2011.00192.x CrossRefPubMedPubMedCentralGoogle Scholar
  93. Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370.  https://doi.org/10.2307/2408641 CrossRefGoogle Scholar
  94. Whiteley AR, Fitzpatrick SW, Funk WC, Tallmon DA (2015) Genetic rescue to the rescue. TREE 30:42–149.  https://doi.org/10.1016/j.tree.2014.10.009 CrossRefPubMedGoogle Scholar
  95. Wigginton JE, Cutler DJ, Abecasis GR (2005) A note on exact tests of Hardy-Weinberg equilibrium. Am J Hum Genet 76:887–893.  https://doi.org/10.1086/429864 CrossRefPubMedPubMedCentralGoogle Scholar
  96. Williamson-Natesan E (2005) Comparison of methods for detecting bottlenecks from microsatellite loci. Conserv Genet 6:551–562.  https://doi.org/10.1007/s10592-005-9009-5 CrossRefGoogle Scholar
  97. Young A, Clarke G (2000) Genetics, demography, and the viability of fragmented populations. Cambridge University Press, UKCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Center of Excellence for Field Biology, Austin Peay State UniversityClarksvilleUSA
  2. 2.Department of BiologyAustin Peay State UniversityClarksvilleUSA
  3. 3.Kentucky Department of Fish and Wildlife ResourcesFrankfortUSA
  4. 4.United States Fish and Wildlife ServiceFrankfortUSA

Personalised recommendations