Advertisement

Revisiting species boundaries and distribution ranges of Nemacheilus spp. (Cypriniformes: Nemacheilidae) and Rasbora spp. (Cypriniformes: Cyprinidae) in Java, Bali and Lombok through DNA barcodes: implications for conservation in a biodiversity hotspot

  • Nicolas HubertEmail author
  • Daniel Lumbantobing
  • Arni Sholihah
  • Hadi Dahruddin
  • Erwan Delrieu-Trottin
  • Frédéric Busson
  • Sopian Sauri
  • Renny Hadiaty
  • Philippe Keith
Research Article

Abstract

Biodiversity hotspots have provided useful geographic proxies for conservation efforts. Delineated from a few groups of animals and plants, biodiversity hotspots do not reflect the conservation status of freshwater fishes. With hundreds of new species described on a yearly basis, fishes constitute the most poorly known group of vertebrates. This situation urges for an acceleration of the fish species inventory through fast and reliable molecular tools such as DNA barcoding. The present study focuses on the freshwater fishes diversity in the Sundaland biodiversity hotspot in Southeast Asia. Recent studies evidenced large taxonomic gaps as well as unexpectedly high levels of cryptic diversity, particularly so in the islands of Java and Bali. The Cypriniformes genera Rasbora and Nemacheilus account for most of the endemic species in Java and Bali, however their taxonomy is plagued by confusion about species identity and distribution. This study examines the taxonomic status of the Rasbora and Nemacheilus species in Java, Bali and Lombok islands through DNA barcodes, with the objective to resolve taxonomic confusion and identify trends in genetic diversity that can be further used for conservation matters. Several species delimitation methods based on DNA sequences were used and confirmed the status of most species, however several cases of taxonomic confusion and two new taxa are detected. Mitochondrial sequences argue that most species range distributions currently reported in the literature are inflated due to erroneous population assignments to the species level, and further highlight the sensitive conservation status of most Rasbora and Nemacheilus species on the islands of Java, Bali and Lombok.

Keywords

Conservation genetics Taxonomy Southeast Asia Cryptic diversity Population fragmentation 

Notes

Acknowledgements

The authors wish to thank Siti Nuramaliati Prijono, Bambang Sunarko, Witjaksono, Mohammad Irham, Marlina Adriyani, Ruliyana Susanti, Rosichon Ubaidillah, Hari Sutrisno and Muhamad Syamsul Arifin Zein at Research Centre for Biology (RCB-LIPI); Jean-Paul Toutain, Robert Arfi, Valérie Verdier and Jean-François Agnèse from the ‘Institut de Recherche pour le Développement’; Joel Le Bail and Nicolas Gascoin at the French embassy in Jakarta for their continuous support. We are thankful Sumanta at IRD Jakarta for his help during the field sampling. Part of the present study was funded by the Institut de Recherche pour le Développement (UMR226 ISE-M and IRD through incentive funds), the MNHN (UMR BOREA), the RCB-LIPI, the French Ichthyological Society (SFI), the Foundation de France and the French embassy in Jakarta. The Indonesian Ministry of Research and Technology approved this study and field sampling was conducted according to the research permits 097/SIP/FRP/SM/IV/2014 for Philippe Keith, 60/EXT/SIP/FRP/SM/XI/2014 for Frédéric Busson and 41/EXT/SIP/FRP/SM/VIII/2014 for Nicolas Hubert. Sequence analysis was aided by funding from the government of Canada through Genome Canada and the Ontario Genomics Institute in support of the International Barcode of Life project. We thank Paul Hebert, Robert Hanner and Evgeny Zakharov as well as BOLD and CCDB staffs at the University of Guelph for their valuable support. Finally, we thank Anti Vasemägi and the three anonymous reviewers for providing constructive comments of earlier versions of the manuscript. This publication has ISEM Number 2018-279-SUD.

Supplementary material

10592_2019_1152_MOESM1_ESM.jpg (69 kb)
Illustration of Nemacheilus chrysolaimos in its original description (JPG 68 KB)
10592_2019_1152_MOESM2_ESM.xlsx (24 kb)
Collection information (XLSX 23 KB)

References

  1. April J, Mayden R, Hanner L, Bernatchez RH L (2011) Genetic calibration of species diversity among North America’s freshwater fishes. Proc Natl Acad Sci USA 108:10602–10607CrossRefGoogle Scholar
  2. Arhens D, Fujisawa T, Krammer HJ, Eberle J, Fabrizi S, Vogler AP (2016) Rarity and incomplete sampling in DNA-based species delimitation. Syst Biol 65:478–494CrossRefGoogle Scholar
  3. Avise JC (1989) Molecular markers, natural history and evolution. Chapman and Hall, New YorkGoogle Scholar
  4. Bermingham E, McCafferty S, Martin AP (1997) Fish biogeography and molecular clocks: perspectives from the Panamanian isthmus. In: Kocher TD, Stepien CA (eds) Molecular systematics of fishes. CA Academic Press, San Diego, pp 113–128CrossRefGoogle Scholar
  5. Blair C, Bryson JRW (2017) Cryptic diversity and discordance in single-locus species delimitation methods within horned lizards (Phrynosomatidae: Phrynosoma). Mol Ecol Resour 17:1168–1182CrossRefGoogle Scholar
  6. Bouckaert RR, Heled J, Kühnert D, Vaughan T, Wu C-H, Xie D, Suchard MA, Rambaut A, Drummond AJ (2014) BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Comput Biol 10:e1003537CrossRefGoogle Scholar
  7. Breckwoldt A, Dsikowitzky L, Baum G, Ferse SCA, van der Wulp S, Kusumanti I, Ramadhan A, Adrianto L (2016) A review of stressors, uses and management perspectives for the larger Jakarta Bay Area, Indonesia. Mar Pollut Bull 110:790–794CrossRefGoogle Scholar
  8. Brown SDJ, Collins RA, Boyer S, Lefort C, Malumbres-Olarte J, Vink CJ, Cruickshank RH (2012) SPIDER: an R package for the analysis of species identity and evolution, with particular reference to DNA barcoding. Mol Ecol Resour 12:562–565CrossRefGoogle Scholar
  9. Dahruddin H, Hutama A, Busson F, Sauri S, Hanner R, Keith P, Hadiaty RK, Hubert N (2017) Revisiting the ichthyodiversity of Java and Bali through DNA barcodes: taxonomic coverage, identification accuracy, cryptic diversity and identification of exotic species. Mol Ecol Resour 17:288–299CrossRefGoogle Scholar
  10. Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9:772CrossRefGoogle Scholar
  11. Durand JD, Hubert N, Shen KN, Borsa P (2017) DNA barcoding grey mullets. Rev Fish Biol Fisheries 27:233–243CrossRefGoogle Scholar
  12. Eidman HM (1989) Exotic aquatic species introduction into Indonesia, vol 3. Exotic aquatic organisms in Asia Asian Fisheries Society Special Publication, Bethesda, pp 57–62Google Scholar
  13. Eschmeyer WN, Fricke R, van der Laan R (2018) Catalog of fishes electronic version. Accessed March 2018Google Scholar
  14. Ezard T, Fujisawa T, Barraclough TG (2009) Splits: SPecies' LImits by Threshold Statistics. R package version 1.0-18/r45. Available from http://R-Forge.R-project.org/projects/splits/
  15. Fagan WF, Holmes EE (2006) Quantifying the extinction vortex. Ecol Lett 9:51–60Google Scholar
  16. Froese R, Pauly D (2014) FishBase. World Wide Web electronic publication. http://www.fishbase.org
  17. Fujisawa T, Barraclough TG (2013) Delimiting species using single-locus data and the generalized mixed Yule coalescent approach: a revised method and evaluation on simulated data sets. Syst Biol, 62:707–24CrossRefGoogle Scholar
  18. Garg T, Hamilton SE, Hochard JP, Kresch EP, Talbot J (2018) (Not so) gently down the stream: River pollution and health in Indonesia. J Environ Econ Manag 92:35–53CrossRefGoogle Scholar
  19. Garnett ST, Christidis L (2017) Taxonomy anarchy hampers conservation. Nature 546:25–27CrossRefGoogle Scholar
  20. Geiger MF, Herder F, Monaghan MT, Almada V, Barbieri R, Bariche M, Berrebi, Bohlen P, Casal-Lopez M, Delmastro GB (2014) Spatial heterogeneity in the mediterranean biodiversity hotspot affects barcoding accuracy of its freshwater fishes. Mol Ecol Resour 14:1210–1221CrossRefGoogle Scholar
  21. Gilpin E, Soulé M (1986) Minimum viable populations: processes of species extinction. In: Soulé ME (ed) Conservation biology: the science of scarcity and diversity. Sinauer, Sunderland. pp 19–34Google Scholar
  22. Guindon S, Gascuel O (2003) A simple, fast and Accurate algorithm to estimate large phylogenies by Maximum Likelihood. Syst Biol 52:696–704CrossRefGoogle Scholar
  23. Hayati A, Tiantono N, Mirza MF, Putra IDS, Abdizen MM, Seta AR, Solikha BM, Fu’adil MH, Putranto TWC, Affandi M, Rosmaninda (2017) Water quality and fish diversity in the Brantas river, East Java, Indonesia. J Biol Res 22:43–49CrossRefGoogle Scholar
  24. Hoffman M, Hilton-Taylor C, Angulo A, Böhm M, Brooks TM, Butchart SHM, Carpenter KE, Chanson J, Collen B, Cox NA et al (2010) The impact of conservation on the status of the world’s vertebrates. Science 330:1503–1509CrossRefGoogle Scholar
  25. Hubert N, Hanner R (2015) DNA barcoding, species delineation and taxonomy: a historical perspective. DNA Barcodes 3:44–58Google Scholar
  26. Hubert N, Hanner RH, Holm E, Mandrak NE, Taylor EB, Burridge M, Watkinson DA, Dumont P, Curry A, Bentzen P, Zhang J, April J, Bernatchez L (2008) Identifying Canadian freshwater fishes through DNA barcodes. PLoS ONE, 3:e2490CrossRefGoogle Scholar
  27. Hubert N, Meyer C, Bruggemann JH, Guérin F, Komeno RJL, Espiau B, Causse R, Williams JT, Planes S (2012) Cryptic diversity in Indo-Pacific coral reef fishes revealed by DNA-barcoding provides new support to the centre-of-overlap hypothesis. PLoS ONE, 7:e28987CrossRefGoogle Scholar
  28. Hubert N, Wibowo A, Busson F, Caruso D, Sulandari S, Nafiqoh N, Rüber L, Pouyaud L, Avarre JC, Herder F, Hanner R, Keith P, Hadiaty RK (2015) DNA barcoding Indonesian freshwater fishes: challenges and prospects. DNA Barcodes 3:144–169Google Scholar
  29. Hubert N, Dettai A, Pruvost P, Cruaud C, Kulbicki M, Myers RF, Borsa P (2018) Geography and life history traits account for the accumulation of cryptic diversity among Indo-West Pacific coral reef fishes. Mar Ecol Prog Ser 583:179–193CrossRefGoogle Scholar
  30. Hutama A, Dahruddin H, Busson F, Sauri S, Keith P, Hadiaty RK, Hanner R, Suryobroto B, Hubert N (2017) Identifying spatially concordant evolutionary significant units across multiple species through DNA barcodes: application to the conservation genetics of the freshwater fishes of Java and Bali. Global Ecol Conserv 12:170–187CrossRefGoogle Scholar
  31. Ivanova NV, Zemlak TS, Hanner RH, Hébert PDN (2007) Universal primers cocktails for fish DNA barcoding. Mol Ecol Notes 7:544–548CrossRefGoogle Scholar
  32. Jaafar TNAM, Taylor MI, Mohd Nor SA, De Bruyn M, Carvalho GR (2012) DNA barcoding reveals cryptic diversity within commercially exploited Indo-Malay carangidae (Teleosteii: Perciformes). PLoS ONE, 7:e49623CrossRefGoogle Scholar
  33. Kadarusman HN, Hadiaty RK, Paradis E, Pouyaud L (2012) Cryptic diversity in Indo-Australian rainbowfishes revealed by DNA Barcoding: implications for conservation in a biodiversity hotspot candidate. Plos ONE 7:e40627CrossRefGoogle Scholar
  34. Kapli P, Zhang SL, Kobert J, Pavlidis K, Stamatakis P, Flouri A T (2017) Multi-rate Poisson Tree Processes for single-locus species delimitation under Maximum Likelihood and Markov Chain Monte Carlo. Bioinformatics 33:1630–1638Google Scholar
  35. Kekkonen M, Hebert PDN (2014) DNA barcode-based delineation of putative species: efficient start for taxonomic workflows. Mol Ecol Resour 14:706–715CrossRefGoogle Scholar
  36. Kekkonen M, Mutanen M, Kaila L, Nieminen M, Hebert PDN (2015) Delineating species with DNA barcodes: a case of taxon dependent method performance in moths. PLoS ONE 10:e0122481CrossRefGoogle Scholar
  37. Knebelsberger T, Dunz AR, Neumann D, Geiger MF (2015) Molecular diversity of Germany’s freshwater fishes and lampreys assessed by DNA barcoding. Mol Ecol Resour 15:562–572CrossRefGoogle Scholar
  38. Kottelat M (2013) The fishes of the inland waters of Southeast Asia: a catalog and core bibliography of the fishes known to occur in freshwaters, mangroves and estuaries. Raffles Bull Zool Suppl 27:1–663Google Scholar
  39. Kottelat M, Whitten AJ, Kartikasari SR, Wirjoatmodjo S (1993) Freshwater fishes of western indonesia and sulawesi. Periplus editions, SingaporeGoogle Scholar
  40. Kusuma WE, Ratmuangkhwang S, Kumazawa Y (2016) Molecular phylogeny and historical biogeography of the Indonesian freshwater fish Rasbora lateristriata species complex (Actinopterygii: Cyprinidae): cryptic species and west-to-east divergences. Mol Phylogenet Evol 105:212–223CrossRefGoogle Scholar
  41. Lamoreux JF, Morrison JC, Ricketts TH, Olson DM, Dinerstein E, McKnight M, Shugart HH (2006) Global tests of biodiversity concordance and the importance of endemism. Nature 440:212–214CrossRefGoogle Scholar
  42. Lohman K, De Bruyn M, Page T, Von Rintelen K, Hall R, Ng PKL, Shih H-T, Carvalho GR, Von Rintelen T (2011) Biogeography of the Indo-Australian archipelago. Annu Rev Ecol Evol Syst 42:205–226CrossRefGoogle Scholar
  43. Machado VN, Collins RA, Ota RP, Andrade MC, Farias IP, Hrbek T (2018) One thousand DNA barcodes of piranhas and pacus reveal geographic structure and unrecognised diversity in the Amazon. Sci Rep 8:8387CrossRefGoogle Scholar
  44. Miralles A, Vences M (2013) New metrics for comparison of taxonomies eveal striking discrepancies among species delimitation methods in Madascincus lizards. PLoS ONE 8:e68242CrossRefGoogle Scholar
  45. Moritz C (1994) Defining ‘Evolutionary Significant Units’ for conservation. Trends Ecol Evol 9:373–375CrossRefGoogle Scholar
  46. Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858CrossRefGoogle Scholar
  47. Paradis E (2010) pegas: an R package for poluation genetics with an integrated modular approach. Bioinformatics 26:419–420CrossRefGoogle Scholar
  48. Paradis E, Claude J, Strimmer K (2004) ape: Analyses of phylogenetics and evolution in R language. Bioinformatics 20:289–290CrossRefGoogle Scholar
  49. Pereira LHG, Hanner R, Foresti F, Oliveira C (2013) Can DNA barcoding accurately discriminate megadiverse Neotropical freshwater fish fauna ? BMC Genet 14:20CrossRefGoogle Scholar
  50. Pons J, Barraclough TG, Gomez-Zurita J, Cardoso A, Duran DP, Hazell S, Kamoun S, Sumlin WD, Vogler AP (2006) Sequence-based species delimitation for the DNA taxonomy of undescribed insects. Syst Biol 55:595–606CrossRefGoogle Scholar
  51. Puillandre N, Lambert A, Brouillet S, Achaz G (2012) ABGD, automatic barcode gap discovery for primary species delimitation. Mol Ecol 21:1864–1877CrossRefGoogle Scholar
  52. R Core Team (2018) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/
  53. Ratnasingham S, Hebert PDN (2007) BOLD: the barcode of life data system. Mol Ecol Notes 7:355–364CrossRefGoogle Scholar
  54. Ratnasingham S, Hebert PDN (2013) A DNA-based registry for all animal species: the barcode index number (BIN) system. PLoS ONE 8:e66213CrossRefGoogle Scholar
  55. Spracklen DV, Reddington CL, Gaveau DLA (2015) Industrial concessions, fires and air pollution in Equatorial Asia. Environ Res Lett 10:091001CrossRefGoogle Scholar
  56. Steinke D, Hanner R (2011) The FISH-BOL collaborators’ protocol. Mitochondrial DNA 22:10–14CrossRefGoogle Scholar
  57. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) Molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729CrossRefGoogle Scholar
  58. Vogler AP, DeSalle R (1994) Diagnosing units of conservation management. Conserv Biol 6:170–178Google Scholar
  59. Ward RD, Hanner RH, Hebert PDN (2009) The campaign to DNA barcode all fishes, FISH-BOL. J Fish Biol 74:329–356CrossRefGoogle Scholar
  60. Whiteley AR, Fitzpatrick SW, Funk WC, Tallmon DA (2014) Genetic rescue to the rescue. Trends Ecol Evol 30:42–49CrossRefGoogle Scholar
  61. Winemiller KO, McIntyre PB, Castello L, Fluet-Chouinard E, Giarrizzo T, Nam S, Baird IG, Darwall W, Lujan NK, Harrison I, Stiassny MLJ, Silvano RAM, Fitzgerald DB, Pelicice FM, Agostinho AA, Gomes LC, Albert JS, Baran E, Petrere M, Zarfl C, Mulligan M, Sullivan JP, Arantes CC, Sousa LM, Koning AA, Hoeinghaus DJ, Sabaj M, Lundberg JG, Armbruster J, Thieme ML, Petry P, Zuanon J, Vilara GT, Snoeks J, Ou C, Rainboth W, Pavanelli CS, Akama A, Soesbergen AV, Sáenz L (2016) Balancing hydropower and biodiversity in the Amazon, Congo, and Mekong. Science 351:128–129CrossRefGoogle Scholar
  62. Winterbottom R, Hanner R, Burridge M, Zur M (2014) A cornucopia of cryptic species—a DNA barcode analysis of the gobiid genus Trimma (Percomorpha, Gobiiformes). Zookeys 381:79–111CrossRefGoogle Scholar
  63. Woodruff DS (2010) Biogeography and conservation in Southeast Asia: how 2.7 million years of repeated environmental fluctuations affect today’s patterns and the future of the remaining refugium-phase biodiversity. Biodivers Conserv 19:919–941CrossRefGoogle Scholar
  64. Zhang J, Kapli P, Pavlidis P, Stamatakis A (2013) A general species delimitation method with applications to phylogenetic placements. Bioinformatics 29:2869–2876CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Nicolas Hubert
    • 1
    Email author
  • Daniel Lumbantobing
    • 2
  • Arni Sholihah
    • 1
    • 3
  • Hadi Dahruddin
    • 1
    • 2
  • Erwan Delrieu-Trottin
    • 1
    • 4
  • Frédéric Busson
    • 1
    • 5
  • Sopian Sauri
    • 2
  • Renny Hadiaty
    • 2
  • Philippe Keith
    • 5
  1. 1.Institut de Recherche pour le Développement, UMR 226 ISEM (UM, CNRS, IRD, EPHE)Université de MontpellierMontpellier cedex 05France
  2. 2.Division of Zoology, Research Center for BiologyIndonesian Institute of Sciences (LIPI)CibinongIndonesia
  3. 3.Instut Teknologi Bandung, School of Life Science and TechnologyBandungIndonesia
  4. 4.Museum für Naturkunde, Leibniz-Institut für Evolutions und Biodiversitätsforschung an der Humboldt-Universität zu BerlinBerlinGermany
  5. 5.UMR 7208 BOREA (MNHN-CNRS-UPMC-IRD-UCBN)Muséum National d’Histoire NaturelleParis cedex 05France

Personalised recommendations