Advertisement

Immunological MHC supertypes and allelic expression: how low is the functional MHC diversity in free-ranging Namibian cheetahs?

  • N. Schwensow
  • A. Castro-Prieto
  • B. Wachter
  • S. SommerEmail author
Research Article

Abstract

Cheetahs (Acinonyx jubatus) are a textbook example of how habitat loss, human-wildlife conflicts and historic bottlenecks depleted genetic variability, both genome-wide and at the major histocompatibility complex (MHC), which plays an integral role in the adaptive immune response. However, free-ranging Namibian cheetahs show no signs of impaired immunocompetence or health. This contradicts theoretical expectations and poses the question whether the manner by which MHC diversity is judged needs to be revised. Here, we show that free-ranging Namibian cheetahs still harbour MHC alleles that are divergent enough to cover several functionally distinct MHC supertypes and thus are probably capable of binding and presenting a relatively broad range of antigens to T-cells. We detected a similar pattern in three other free-ranging, strongly bottlenecked cat species, supporting the hypothesis that species with a low MHC allelic diversity might be able to retain functional diversity not within but across loci. Moreover, the allelic composition influences the level of MHC class I and class II expression which also might play a significant role in pathogen defence. Thus, our study indicates that the evolutionary role of MHC diversity goes beyond counting the remaining number of MHC alleles and offers an explanation as to how cat species might have avoided impaired immuno-competence, despite showing low MHC allelic diversity. Although the low MHC diversity currently seems to be sufficient to ensure the health of free-ranging cheetahs, it is currently unknown whether it can provide sufficient protection from future threats through emerging new pathogens.

Keywords

Immune gene diversity MHC supertypes MHC expression Cheetah (Acinonyx jubatusNamibia 

Notes

Acknowledgements

We thank the German Research Foundation (DFG; SO 428/10-1), the Leibniz Institute for Zoo and Wildlife Research (IZW) in Germany and the Messerli Foundation in Switzerland for funding this study. We also thank the Namibian Ministry of Environment and Tourism for permission to conduct the research, the Namibian farmers for their support and collaboration and the team members of the IZW cheetah research project, especially Jörg Melzheimer and Annika Weigold, for valuable assistance in the field. We are grateful to Anke Schmidt for providing help in the laboratory and Theresa Jones for language editing. Two anonymous reviewers provided very useful comments on a former draft of this manuscript.

Supplementary material

10592_2019_1143_MOESM1_ESM.docx (22 kb)
Supplementary material 1 (DOCX 21 KB)
10592_2019_1143_MOESM2_ESM.docx (14 kb)
Supplementary material 2 (DOCX 14 KB)
10592_2019_1143_MOESM3_ESM.docx (57 kb)
Supplementary material 3 (DOCX 56 KB)
10592_2019_1143_MOESM4_ESM.docx (22 kb)
Supplementary material 4 (DOCX 22 KB)
10592_2019_1143_MOESM5_ESM.pdf (252 kb)
Supplementary material 5 (PDF 251 KB)
10592_2019_1143_MOESM6_ESM.xlsx (1.4 mb)
Supplementary material 6 (XLSX 1421 KB)
10592_2019_1143_MOESM7_ESM.xlsx (35 kb)
Supplementary material 7 (XLSX 34 KB)

References

  1. Apps R, Qi Y, Carlson JM, Chen H, Gao X, Thomas R, Yuki Y, Del Prete GQ, Goulder P, Brumme ZL, Brumme CJ, John M, Mallal S, Nelson G, Bosch R, Heckerman D, Stein JL, Soderberg KA, Moody MA, Denny TN, Zeng X, Fang J, Moffett A, Lifson JD, Goedert JJ, Buchbinder S, Kirk GD, Fellay J, McLaren P, Deeks SG, Pereyra F, Walker B, Michael NL, Weintrob A, Wolinsky S, Liao W, Carrington M (2013) Influence of HLA-C expression level on HIV control. Science 340:87–91CrossRefGoogle Scholar
  2. Arriero E, Wanelik KM, Birtles RJ, Bradley JE, Jackson JA, Paterson S, Begon M (2017) From the animal house to the field: Are there consistent individual differences in immunological profile in wild populations of field voles (Microtus agrestis)? PLoS ONE 12:e0183450CrossRefGoogle Scholar
  3. Axtner J, Sommer S (2012) The functional importance of sequence versus expression variability of MHC alleles in parasite resistance. Genetica 140:407–420CrossRefGoogle Scholar
  4. Barton K (2015) MuMIn: multi-model inference. R package version 1.14.0., http://CRAN.R-project.org/package=MuMIn
  5. Bernatchez L, Landry C (2003) MHC studies in nonmodel vertebrates: what have we learned about natural selection in 15 years? J Evol Biol 16:363–377CrossRefGoogle Scholar
  6. Bjorkman P, Parham P (1990) Structure, function, and diversity of class I major histocompatibility complex molecules. Annu Rev Biochem 59:253–288CrossRefGoogle Scholar
  7. Bjorkman PJ, Saper MA, Samraoui B, Bennett WS, Strominger JL, Wiley DC (1987) The foreign antigen binding site and T cell recognition regions of class I histocompatibility antigens. Nature 329:512–518CrossRefGoogle Scholar
  8. Brown JH, Jardetzky TS, Gorga JC, Stern LJ, Urban RG, Strominger JL, Wiley DC (1993) Three-dimensional structure of the human class II histocompatibility antigen HLA DR1. Nature 364:33–39CrossRefGoogle Scholar
  9. Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach, 2nd edn. edn. Springer, New YorkGoogle Scholar
  10. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335CrossRefGoogle Scholar
  11. Castro-Prieto A, Wachter B, Melzheimer J, Thalwitzer S, Sommer S (2011a) Diversity and evolutionary patterns of immune genes in free-ranging Namibian leopards (Panthera pardus pardus). J Hered 102:653–665CrossRefGoogle Scholar
  12. Castro-Prieto A, Wachter B, Sommer S (2011b) Cheetah paradigm revisited: MHC diversity in the world’s largest free-ranging population. Mol Biol Evol 28:1455–1468CrossRefGoogle Scholar
  13. Castro-Prieto A, Wachter B, Melzheimer J, Thalwitzer S, Hofer H, Sommer S (2012) Immunogenetic variation and differential pathogen exposure in free-ranging cheetahs across Namibian farmlands. PLoS ONE 7:e49129CrossRefGoogle Scholar
  14. Chappell PE, Meziane EK, Harrison M, Magiera Ł, Hermann C, Mears L, Wrobel AG, Durant C, Nielsen LL, Buus S, Ternette N, Mwangi W, Butter C, Nair V, Ahyee T, Duggleby R, Madrigal A, Roversi P, Lea SM, Kaufman J (2015) Expression levels of MHC class I molecules are inversely correlated with promiscuity of peptide binding. eLife 4:e05345CrossRefGoogle Scholar
  15. Cheng Y, Sanderson C, Jones M, Belov K (2012) Low MHC class II diversity in the Tasmanian devil (Sarcophilus harrisii). Immunogenetics 64:525–533CrossRefGoogle Scholar
  16. Clarke B, Kirby DR (1966) Maintenance of histocompatibility polymorphisms. Nature 211:999–1000CrossRefGoogle Scholar
  17. Clozato CL, Mazzoni CJ, Moraes-Barros N, Morgante JS, Sommer S (2015) Spatial pattern of adaptive and neutral genetic diversity across different biomes in the lesser anteater (Tamandua tetradactyla). Ecol Evol 5:4932–4948CrossRefGoogle Scholar
  18. Dobrynin P, Liu S, Tamazian G, Xiong Z, Yurchenko AA, Krasheninnikova K, Kliver S, Schmidt-Küntzel A, Koepfli K-P, Johnson W, Kuderna LFK, García-Pérez R, Manuel MD, Godinez R, Komissarov A, Makunin A, Brukhin V, Qiu W, Zhou L, Li F, Yi J, Driscoll C, Antunes A, Oleksyk TK, Eizirik E, Perelman P, Roelke M, Wildt D, Diekhans M, Marques-Bonet T, Marker L, Bhak J, Wang J, Zhang G, O’Brien SJ (2015) Genomic legacy of the African cheetah, Acinonyx jubatus. Genome Biol 16:277CrossRefGoogle Scholar
  19. Doherty PC, Zinkernagel RM (1975) Enhanced immunological surveillance in mice heterozygous at the H-2 gene complex. Nature 256:50–52CrossRefGoogle Scholar
  20. Dunn OJ (1964) Multiple comparisons using rank sums. Technometrics 6:241–252CrossRefGoogle Scholar
  21. Durant SM, Mitchell N, Groom R, Pettorelli N, Ipavec A, Jacobson AP, Woodroffe R, Böhm M, Hunter LTB, Becker MS, Broekhuis F, Bashir S, Andresen L, Aschenborn O, Beddiaf M, Belbachir F, Belbachir-Bazi A, Berbash A, Brandao de Matos Machado I, Breitenmoser C, Chege M, Cilliers D, Davies-Mostert H, Dickman AJ, Ezekiel F, Farhadinia MS, Funston P, Henschel P, Horgan J, de Iongh HH, Jowkar H, Klein R, Lindsey PA, Marker L, Marnewick K, Melzheimer J, Merkle J, M’soka J, Msuha M, O’Neill H, Parker M, Purchase G, Sahailou S, Saidu Y, Samna A, Schmidt-Küntzel A, Selebatso E, Sogbohossou EA, Soultan A, Stone E, van der Meer E, van Vuuren R, Wykstra M, Young-Overton K (2017) The global decline of cheetah Acinonyx jubatus and what it means for conservation. Proc Natl Acad Sci 114:528–533CrossRefGoogle Scholar
  22. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797CrossRefGoogle Scholar
  23. Edwards SV, Hedrick PW (1998) Evolution and ecology of MHC molecules: from genomics to sexual selection. Trends Ecol Evol 13:305–311CrossRefGoogle Scholar
  24. Ellegren H, Parsch J (2007) The evolution of sex-biased genes and sex-biased gene expression. Nat Rev Genet 8:689–698CrossRefGoogle Scholar
  25. Ellison A, Allainguillaume J, Girdwood S, Pachebat J, Peat KM, Wright P, Consuegra S (2012) Maintaining functional major histocompatibility complex diversity under inbreeding: the case of a selfing vertebrate. Proc R Soc Lond B 279:5004–5013CrossRefGoogle Scholar
  26. Ende Z, Deymier MJ, Claiborne DT, Prince JL, Mónaco DC, Kilembe W, Allen SA, Hunter E (2018) HLA class I downregulation by HIV-1 variants from subtype C transmission pairs. J Virol.  https://doi.org/10.1128/JVI.01633-17 Google Scholar
  27. Frankham R, Ballou JD, Briscoe DA (2002) Introduction to conservation genetics. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  28. Fu M, Waldman B (2017) Major histocompatibility complex variation and the evolution of resistance to amphibian chytridiomycosis. Immunogenetics 69:529–536CrossRefGoogle Scholar
  29. Graffelman J (2015) Exploring diallelic genetic markers: the HardyWeinberg package. J Stat Softw 64:1–23CrossRefGoogle Scholar
  30. Greene JM, Wiseman RW, Lank SM, Bimber BN, Karl JA, Burwitz BJ, Lhost JJ, Hawkins OE, Kunstman KJ, Broman KW, Wolinsky SM, Hildebrand WH, O’Connor DH (2011) Differential MHC class I expression in distinct leukocyte subsets. BMC Immunol 12:39CrossRefGoogle Scholar
  31. Handunnetthi L, Ramagopalan SV, Ebers GC, Knight JC (2010) Regulation of MHC class II gene expression, genetic variation and disease. Genes Immun 11:99–112CrossRefGoogle Scholar
  32. Heinrich SK, Hofer H, Courtiol A, Melzheimer J, Dehnhard M, Czirják G, Wachter B (2017) Cheetahs have a stronger constitutive innate immunity than leopards. Sci Rep 7, 44837CrossRefGoogle Scholar
  33. Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755CrossRefGoogle Scholar
  34. Hughes AL, Nei M (1992) Maintenance of MHC polymorphism. Nature 355:402–403CrossRefGoogle Scholar
  35. IUCN (2017) The IUCN Red List of Threatened Species. Version 2017-2. http://www.iucnredlist.org. Accessed 14 Sep 2017.
  36. Jombart T (2008) adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24:1403–1405CrossRefGoogle Scholar
  37. Kaufman J, Salomonsen J (1997) The “minimal essential MHC” revisited: both peptide-binding and cell surface expression level of MHC molecules are polymorphisms selected by pathogens in chickens. Hereditas 127:67–73CrossRefGoogle Scholar
  38. Kaufman JIM, VöLk H, Wallny H-J (1995) A “minimal essential MHC” and an “unrecognized MHC”: Two extremes in selection for polymorphism. Immunol Rev 143:63–88CrossRefGoogle Scholar
  39. Kruskal WH, Wallis WA (1952) Use of ranks in one-criterion variance analysis. J Am Stat Assoc 47:583–621CrossRefGoogle Scholar
  40. Lenz TL (2011) Computational prediction of MHC II-antgen binding supports divergent allele advantage and explains trans-species polymorphism. Evolution 65:2380–2390CrossRefGoogle Scholar
  41. Lighten J, Papadopulos AST, Mohammed RS, Ward BJ, Paterson G, Baillie I, Bradbury L, Hendry IR, Bentzen AP, van Oosterhout P C (2017) Evolutionary genetics of immunological supertypes reveals two faces of the Red Queen. Nat Commun 8:1294CrossRefGoogle Scholar
  42. Mazerolle MJ (2016) AICcmodavg: model selection and multimodel inference based on (Q)AIC(c). R package version 2.0–4. http://CRAN.R-project.org/package=MuMIn
  43. Meyer-Lucht Y, Sommer S (2009) Number of MHC alleles is related to parasite loads in natural populations of yellow necked mice, Apodemus flavicollis. Evol Ecol Res 11:1085–1097Google Scholar
  44. Munson L, Terio KA, Worley M, Jago M, Bagot-Smith A, Marker L (2005) Extrinsic factors significantly affect patterns of disease in free-ranging and captive cheetah (Acinonyx jubatus) populations. J Wildl Dis 41:542–548CrossRefGoogle Scholar
  45. Murphy K, Weaver C (2017) Janeway’s immunobiology, 9th EditionGoogle Scholar
  46. O’Brien SJ, Evermann JF (1988) Interactive influence of infectious disease and genetic diversity in natural populations. Trends Ecol Evol 3:254–259CrossRefGoogle Scholar
  47. O’Brien SJ, Roelke ME, Marker L, Newman A, Winkler CA, Meltzer D, Colly L, Evermann JF, Bush M, Wildt DE (1985) Genetic basis for species vulnerability in the cheetah, 227. Science, New York, pp 1428–1434Google Scholar
  48. O’Brien SJ, Wildt DE, Bush M (1986) The cheetah in genetic peril. Sci Am 254:84–95CrossRefGoogle Scholar
  49. Pohlert T (2014) The pairwise multiple comparison of mean ranks package (PMCMR). R package. http://CRAN.R-project.org/package=PMCMR
  50. R Development Core Team (2013) R: A language and environment for statistical computing. R Foundation for Statistical Computing., Vienna, Austria. http://www.R-project.org/
  51. Radwan J, Biedrzycka A, Babik W (2010) Does reduced MHC diversity decrease viability of vertebrate populations? Biol Conserv 143:537–544CrossRefGoogle Scholar
  52. Richman AD (2000) Evolution of balanced genetic polymorphism. Mol Ecol 9:1953–1963CrossRefGoogle Scholar
  53. Ruijter JM, Ramakers C, Hoogaars WMH, Karlen Y, Bakker O, van den Hoff MJB, Moorman AFM (2009) Amplification efficiency: linking baseline and bias in the analysis of quantitative PCR data. Nucl Acids Res 37(6):e45CrossRefGoogle Scholar
  54. Ruijter JM, Lorenz P, Tuomi JM, Hecker M, van den Hoff MJB (2014) Fluorescent-increase kinetics of different fluorescent reporters used for qPCR depend on monitoring chemistry, targeted sequence, type of DNA input and PCR efficiency. Mikrochim Acta 181(13–14):1689–1696CrossRefGoogle Scholar
  55. Sachdev M, Sankaranarayanan R, Reddanna P, Thangaraj K, Singh L (2005) Major histocompatibility complex class I polymorphism in Asiatic lions. Tissue Antigens 66:9–18CrossRefGoogle Scholar
  56. Sandberg M, Eriksson L, Jonsson J, Sjöström M, Wold S (1998) New chemical descriptors relevant for the design of biologically active peptides. A multivariate characterization of 87 amino acids. J Med Chem 41:2481–2491CrossRefGoogle Scholar
  57. Santos PSC, Michler F-U, Sommer S (2017) Can MHC-assortative partner choice promote offspring diversity? A new combination of MHC-dependent behaviours among sexes in a highly successful invasive mammal. Mol Ecol 26:2392–2404CrossRefGoogle Scholar
  58. Schuster AC, Herde A, Mazzoni CJ, Eccard JA, Sommer S (2016) Evidence for selection maintaining MHC diversity in a rodent species despite strong density fluctuations. Immunogenetics 68:429–437CrossRefGoogle Scholar
  59. Schwensow N, Fietz J, Dausmann K, Sommer S (2007) Neutral versus adaptive variation in parasite resistance: importance of MHC-supertypes in a free-ranging primate. Heredity 99:265–277CrossRefGoogle Scholar
  60. Schwensow N, Mazzoni CJ, Marmesat E, Fickel J, Peacock D, Kovaliski J, Sinclair R, Cassey P, Cooke B, Sommer S (2017) High adaptive variability and virus-driven selection on major histocompatibility complex (MHC) genes in invasive wild rabbits in Australia. Biol Invasions 19:1255–1271CrossRefGoogle Scholar
  61. Sengupta S, Naz S, Das I, Ahad A, Padhi A, Naik SK, Ganguli G, Pattanaik KP, Raghav SK, Nandicoori VK, Sonawane A (2017) Mycobacterium tuberculosis EsxL inhibits MHC-II expression by promoting hypermethylation in class-II transactivator loci in macrophages. J Biol Chem 292:6855–6868CrossRefGoogle Scholar
  62. Sepil I, Lachish S, Hinks AE, Sheldon BC (2013) MHC supertypes confer both qualitative and quantitative resistance to avian malaria infections in a wild bird population. Proc R Soc B 280:20130327CrossRefGoogle Scholar
  63. Siddle HV, Marzec J, Cheng Y, Jones M, Belov K (2010) MHC gene copy number variation in Tasmanian devils: implications for the spread of a contagious cancer. Proc R Soc Lond B 277:2001–2006CrossRefGoogle Scholar
  64. Sidney J, Grey HM, Kubo RT, Sette A (1996) Practical, biochemical and evolutionary implications of the discovery of HLA class I supermotifs. Immunol Today 17:261–266CrossRefGoogle Scholar
  65. Sommer S (2005) The importance of immune gene variability (MHC) in evolutionary ecology and conservation. Front Zool 2:16CrossRefGoogle Scholar
  66. Sommer S, Courtiol A, Mazzoni C (2013) MHC genotyping of non-model organisms using next-generation sequencing: a new methodology to deal with artefacts and allelic dropout. BMC Genom 14:542CrossRefGoogle Scholar
  67. Takahata N, Nei M (1990) Allelic genealogy under overdominant and frequency-dependent selection and polymorphism of major histocompatibility complex loci. Genetics 124:967–978Google Scholar
  68. Thalwitzer S, Wachter B, Robert N, Wibbelt G, Müller T, Lonzer J, Meli ML, Bay G, Hofer H, Lutz H (2010) Seroprevalences to viral pathogens in free-ranging and captive cheetahs (Acinonyx jubatus) on Namibian farmland. Clin Vaccine Immunol 17:232–238CrossRefGoogle Scholar
  69. Thomas R, Apps R, Qi Y, Gao X, Male V, O’hUigin C, O’Connor G, Ge D, Fellay J, Martin JN, Margolick J, Goedert JJ, Buchbinder S, Kirk GD, Martin MP, Telenti A, Deeks SG, Walker BD, Goldstein D, McVicar DW, Moffett A, Carrington M (2009) HLA-C cell surface expression and control of HIV/AIDS correlate with a variant upstream of HLA-C. Nat Genet 41:1290–1294CrossRefGoogle Scholar
  70. Tourdot S, Gould KG (2002) Competition between MHC class I alleles for cell surface expression alters CTL responses to influenza A virus. J Immunol 169:5615–5621CrossRefGoogle Scholar
  71. Trachtenberg E, Korber B, Sollars C, Kepler TB, Hraber PT, Hayes E, Funkhouser R, Fugate M, Theiler J, Hsu YS, Kunstman K, Wu S, Phair J, Erlich H, Wolinsky S (2003) Advantage of rare HLA supertype in HIV disease progression. Nat Med 9:928–935CrossRefGoogle Scholar
  72. Tuomi JM, Voorbraak F, Jones DL, Ruijter JM (2010) Bias in the Cq value observed with hydrolysis probe based quantitative PCR can be corrected with the estimated PCR efficiency value. Methods 50(4):313–322CrossRefGoogle Scholar
  73. van Oosterhout C (2009) A new theory of MHC evolution: beyond selection on the immune genes. Proc R Soc B 276:657–665CrossRefGoogle Scholar
  74. van Oosterhout C (2013) Maintenance of major histocompatibility supertype variation in selfing vertebrate is no evidence for overdominant selection. Proc R Soc B 280:20122501CrossRefGoogle Scholar
  75. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:1–12CrossRefGoogle Scholar
  76. Wakeland EK, Boehme S, She JX, Lu CC, McIndoe RA, Cheng I, Ye Y, Potts WK (1990) Ancestral polymorphism of MHC class II genes: divergent allele advantage. Immunol Res 9:115–122CrossRefGoogle Scholar
  77. Wang S, Guo L, Liu D, Liu W, Wu Y (2016) HLAsupE: an integrated database of HLA supertype-specific epitopes to aid in the development of vaccines with broad coverage of the human population. BMC Immunol 17:17CrossRefGoogle Scholar
  78. Wang S, Liu C, Wilson AB, Zhao N, Li X, Zhu W, Gao X, Liu X, Li Y (2017) Pathogen richness and abundance predict patterns of adaptive major histocompatibility complex variation in insular amphibians. Mol Ecol 26:4671–4685CrossRefGoogle Scholar
  79. Wildt DE, Bush M, Howard JG, O’Brien SJ, Meltzer D, Van Dyk A (1983) Unique seminal quality in the South African cheetah and a comparative evaluation in the domestic cat. Biol Reprod 29:1019–1025CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Evolutionary Ecology and Conservation GenomicsUniversity of UlmUlmGermany
  2. 2.School of Biological SciencesUniversity of AdelaideAdelaideAustralia
  3. 3.Todos Santos CenterColorado State UniversityTodos SantosMexico
  4. 4.Evolutionary EcologyLeibniz Institute for Zoo and Wildlife ResearchBerlinGermany

Personalised recommendations