Advertisement

Conservation Genetics

, Volume 19, Issue 5, pp 1185–1198 | Cite as

Contribution of genetics for implementing population translocation of the threatened Arnica montana

  • Fabienne Van Rossum
  • Olivier Raspé
Research Article

Abstract

Ecological restoration programmes aiming at population recovery of imperilled plant species increasingly involve plant translocations. Evaluating the genetic status of seed source and target populations is essential for designing plant translocation protocols and optimizing recovery success. We developed nine polymorphic microsatellite markers and used three plastid markers to investigate genetic variation and structure of the two last large and six small remaining populations of the self-incompatible, clonally-propagating Arnica montana in southern Belgium and bordering France. The aim of the study was to determine the genetic status of these remaining populations and whether the large populations can be used as seed source for translocations. Most small populations maintained high genetic diversity and showed no inbreeding or a heterozygote excess, which may be explained by high genet longevity thanks to clonal propagation, heterosis, inbreeding depression at early development stages and/or no recruitment. Genotypic diversity was low in small populations, with clonal propagation mainly contributing to rosette production. The number of genets, and therefore effective population size, was often very small, restricting compatible mate availability. The situation is therefore more critical than it seems on the field, and bringing new genetic variation is necessary. Although no polymorphism was found in plastid DNA markers, between-population differentiation based on microsatellite markers was moderate, except for very small populations, where it was greater (FST > 0.200). These patterns of differentiation were likely due to genetic drift effects and demographic stochasticity. We recommend using mixed seed material from the two large populations for translocations, and before conducting reinforcements, to first implement crossing experiments and reintroductions of mixed and crossed material in ecologically restored sites to understand the long-term effects of combining genotypes from different locations.

Keywords

Arnica montana Clonality Genetic restoration Microsatellites Plant translocation 

Notes

Acknowledgements

This study was supported by the European Union LIFE + Nature & Biodiversity Program (project no. LIFE11 NAT/BE/001060). We thank the Département de la Nature et des Forêts (Service Public de Wallonie), the authorities of the military camps of Elsenborn and Lagland and Natagora for access to the study sites and for the authorization to collect plant material, Sandrine Godefroid, Sarah Le Pajolec, Marie Hechelski, and Jean-Baptiste Walczak and Mathieu Saint-Val (Conservatoire botanique national du Bassin parisien) for their help in sampling seeds and leaf material and/or providing information on populations, Wim Baert and Alexia Sememaro for lab work, Laurent Grumiau and the unit of Evolutionary Biology and Ecology (Université Libre de Bruxelles, Belgium) for access to the sequencer platform, Sophie Gallina (Unit of Evo-Eco-Paleo, University of Lille, France) for the STRUCTURE analyses that were carried out using the European Grid Infrastructure with the Biomed virtual organization via DIRAC portal supported by France Grilles and Christine Edwards and three anonymous reviewers for comments on the manuscript.

Supplementary material

10592_2018_1087_MOESM1_ESM.doc (84 kb)
Supplementary material 1 (DOC 83 KB)

References

  1. Barmentlo SE, Meirmans PG, Luijten SH, Triest L, Oostermeijer JGB (2017) Outbreeding depression and breeding system evolution in small, remnant populations of Primula vulgaris: consequences for genetic rescue. Conserv Genet  https://doi.org/10.1007/s10592-017-1031-x CrossRefGoogle Scholar
  2. Basey AC, Fant JB, Kramer AT (2015) Producing native plant materials for restoration: 10 rules to collect and maintain genetic diversity. Native Plants J 16:37–53.  https://doi.org/10.3368/npj.16.1.37 CrossRefGoogle Scholar
  3. Behr R, Bizot A, Didier B, Misset C, Morgan F, Lanfant P, Royer J-M, Thevenin S, Worms C (2007) Liste rouge de Champagne-Ardenne Flore vasculaire. http://www.ardennes.gouv.fr/IMG/pdf/LRR_flore_cle0d3dce.pdf. Accessed 15 Feb 2018
  4. Berjano R, Gauthier P, Fisogni A, Doblas D, Pons V, Thompson JD (2013) Mate limitation in populations of the endangered Convolvulus lineatus L.: a case for genetic rescue? J Nat Conserv 21:334–341.  https://doi.org/10.1016/j.jnc.2013.05.001 CrossRefGoogle Scholar
  5. Bilz M, Kell SP, Maxted N, Lansdown RV (2011) European red list of vascular plants. Publications office of the European Union, Luxembourg. https://portals.iucn.org/library/sites/library/files/documents/RL-4-016.pdf. Accessed 15 Feb 2018
  6. Bottin L, Le Cadre S, Quilichini A, Bardin P, Moret J, Machon N (2007) Reestablishment trials in endangered plants: a review and the example of Arenaria grandiflora, a species on the brink of extinction in the Parisian region (France). Ecoscience 14:410–419.  https://doi.org/10.2980/1195-6860(2007)14%5B410:RTIEPA%5D2.0.CO;2 CrossRefGoogle Scholar
  7. Colas B, Kirchner F, Riba M, Olivieri I, Mignot A, Imbert E, Beltrame C, Carbonell D, Fréville H (2008) Restoration demography: a 10-year demographic comparison between introduced and natural populatios of endemic Centaurea corymbosa (Asteraceae). J Appl Ecol 45:1468–1476.  https://doi.org/10.1111/j.1365-2664.2008.01536.x CrossRefGoogle Scholar
  8. Cordier J (2013) Liste rouge des plantes vasculaires de la région Centre. In: Nature Centre, Conservatoire botanique national du Bassin parisien (eds) Livre rouge des habitats naturels et des espèces menacés de la région Centre. Nature Centre Ed., Orléans, pp 95–171Google Scholar
  9. Dalrymple SE, Banks E, Stewart GB, Pullin AS (2012) A meta analysis of threatened plant reintroductions from across the globe. In: Maschinski J, Haskins KE (eds) Plant reintroduction in a changing climate. Promises and perils. Island Press, Washington, pp 31–50.  https://doi.org/10.5822/978-1-61091-183-2_3 CrossRefGoogle Scholar
  10. Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15Google Scholar
  11. Dunning LT, Savolainen V (2010) Broad-scale amplification of matK for DNA barcoding plants, a technical note. Bot J Linn Soc 164:1–9.  https://doi.org/10.1111/j.1095-8339.2010.01071.x CrossRefGoogle Scholar
  12. Duwe VK, Muller LAH, Borsch T, Ismail SA (2017) Pervasive genetic differentiation among Central European populations of the threatened Arnica montana L. and genetic erosion at lower elevations. Perspect Plant Ecol 27:45–56.  https://doi.org/10.1016/j.ppees.2017.02.003 CrossRefGoogle Scholar
  13. Earl DA, vonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361.  https://doi.org/10.1007/s12686-011-9548-7 CrossRefGoogle Scholar
  14. Edmands S (2007) Between a rock and a hard place: evaluating the relative risks of inbreeding and outbreeding for conservation and management. Mol Ecol 16:463–475.  https://doi.org/10.1111/j.1365-294X.2006.03148.x CrossRefPubMedGoogle Scholar
  15. El Mousadik A, Petit RJ (1996) High level of genetic differentiation for allelic richness among populations of the argan tree (Argania spinosa (L.) Skeels) endemic to Morocco. Theor Appl Genet 92:832–839.  https://doi.org/10.1007/BF00221895 CrossRefPubMedGoogle Scholar
  16. Ellstrand NC, Roose ML (1987) Patterns of genotypic diversity in clonal plant species. Am J Bot 71:123–131CrossRefGoogle Scholar
  17. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620.  https://doi.org/10.1111/j.1365-294X.2005.02553.x CrossRefPubMedCentralPubMedGoogle Scholar
  18. Faircloth BC (2008) Msatcommander: detection of microsatellite repeat arrays and automated, locus-specific primer design. Mol Ecol Resour 8:92–94.  https://doi.org/10.1111/j.1471-8286.2007.01884.x CrossRefPubMedGoogle Scholar
  19. Fant JB, Kramer A, Sirkin E, Havens K (2013) Genetics of reintroduced populations of the narrowly endemic thistle, Cirsium pitcheri (Asteraceae). Botany 91:301–308.  https://doi.org/10.1139/cjb-2012-0232 CrossRefGoogle Scholar
  20. Ford CS, Ayres KL, Toomey N, Haider N, Van Alphen Stahl J, Kelly LJ, Wikström N, Hollingsworth PM, Duff RJ, Hoot SB, Cowan RS, Chase MW, Wilkinson MJ (2009) Selection of candidate coding DNA barcoding regions for use on land plants. Bot J Linn Soc 159:1–11.  https://doi.org/10.1111/j.1095-8339.2008.00938.x CrossRefGoogle Scholar
  21. Frankham R (2015) Genetic rescue of small inbred populations: meta-analysis reveals large and consistent benefits of gene flow. Mol Ecol 24:2610–2618.  https://doi.org/10.1111/mec.13139 CrossRefPubMedGoogle Scholar
  22. Frankham R, Ballou JD, Eldridge MDB, Lacy RC, Ralls K, Dudash MR, Fenster CB (2011) Predicting the probability of outbreeding depression. Conserv Biol 25:465–475.  https://doi.org/10.1111/j.1523-1739.2011.01662.x CrossRefPubMedGoogle Scholar
  23. Gathmann A, Tscharntke T (2002) Foraging ranges of solitary bees. J Anim Ecol 71:757–764.  https://doi.org/10.1046/j.1365-2656.2002.00641.x CrossRefGoogle Scholar
  24. Godefroid S, Piazza C, Rossi G et al (2011) How successful are plant species reintroductions? Biol Conserv 144:672–682.  https://doi.org/10.1016/j.biocon.2010.10.003 CrossRefGoogle Scholar
  25. Godefroid S, Le Pajolec S, Van Rossum F (2016a) Pre-translocation considerations in rare plant reintroductions: implications for designing protocols. Plant Ecol 217:169–182.  https://doi.org/10.1007/s11258-015-0526-0 CrossRefGoogle Scholar
  26. Godefroid S, Le Pajolec S, Van Rossum F (2016b) Rescuing critically endangered species in Belgium—An ambitious reintroduction program of the Botanic Garden Meise. BG J 13:24–27Google Scholar
  27. Goudet J (2001) FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3.2). Updated from Goudet (1995). http://www.unil.ch/izea/softwares/fstat.html. Accessed 01 Dec 2017
  28. Hall T (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41:95–98Google Scholar
  29. Hardy OJ, Vekemans X (2002) SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes 2:618–620.  https://doi.org/10.1046/j.1471-8278.2002.00305.x CrossRefGoogle Scholar
  30. Harzé M, Mahy G, Bizoux J-P, Piqueray J, Monty A (2015) Specialist plant species harbour higher reproductive performances in recently restored calcareous grasslands than in reference habitats. Plant Ecol Evol 148:181–190.  https://doi.org/10.5091/plecevo.2015.1013 CrossRefGoogle Scholar
  31. Hautekèete N-C, Frachon L, Luczak C, Toussaint B, Van Landuyt W, Van Rossum F, Piquot Y (2015) Habitat type shapes long-term plant biodiversity budgets in two densely populated regions in north-western Europe. Divers Distrib 21:631–642.  https://doi.org/10.1111/ddi.12287 CrossRefGoogle Scholar
  32. Heinken T, Weber E (2013) Consequences of habitat fragmentation for plant species: do we know enough? Perspect Plant Ecol 15:205–216.  https://doi.org/10.1016/j.ppees.2013.05.003 CrossRefGoogle Scholar
  33. Hubisz MJ, Falush D, Stephens M, Pritchard JK (2009) Inferring weak population structure with the assistance of sample group information. Mol Ecol Resour 9:1322–1332.  https://doi.org/10.1111/j.1755-0998.2009.02591.x CrossRefPubMedCentralPubMedGoogle Scholar
  34. Hultén E, Fries M (1986) Atlas of North European vascular plants: north of the Tropic of Cancer I-III. Koeltz Scientific Books, KönigsteinGoogle Scholar
  35. Jacquemyn H, Van Rossum F, Brys R, Endels P, Hermy M, Triest L, De Blust G (2003) Effects of agricultural land use and fragmentation on genetics, demography and population persistence of the rare Primula vulgaris, and implications for conservation. Belg J Bot 136:5–22Google Scholar
  36. Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801–1806.  https://doi.org/10.1093/bioinformatics/btm233 CrossRefPubMedGoogle Scholar
  37. Kahmen S, Poschlod P (2000) Population size, plant performance, and genetic variation in the rare plant Arnica montana L. in the Rhön, Germany. Basic Appl Ecol 1:43–51.  https://doi.org/10.1078/1439-1791-00007 CrossRefGoogle Scholar
  38. Keller M, Kollmann J, Edwards P (2000) Genetic introgression from distant provenances reduces fitness in local weed populations. J Appl Ecol 37:647–659.  https://doi.org/10.1046/j.1365-2664.2000.00517.x CrossRefGoogle Scholar
  39. Kirby GC (1975) Heterozygote frequencies in small subpopulations. Theor Populat Biol 8:31–48.  https://doi.org/10.1016/0040-5809(75)90037-4 CrossRefGoogle Scholar
  40. Knuth P (1908) Handbook of flower pollination, vol 2. Clarendon Press, OxfordGoogle Scholar
  41. Kwak MM, Velterop O, van Andel J (1998) Pollen and gene flow in fragmented habitats. Appl Veg Sci 1:37–54.  https://doi.org/10.2307/1479084 CrossRefGoogle Scholar
  42. Lawrence BA, Kaye TN (2011) Reintroduction of Castilleja levisecta: effects of ecological similarity, source population genetics, and habitat quality. Restor Ecol 19:166–176.  https://doi.org/10.1111/j.1526-100X.2009.00549.x CrossRefGoogle Scholar
  43. Liu H, Ren H, Liu Q, Wen X, Maunder M, Gao J (2015) Translocation of threatened plants as a conservation measure in China. Conserv Biol 29:1537–1551.  https://doi.org/10.1111/cobi.12585 CrossRefPubMedGoogle Scholar
  44. Luijten SH, Oostermeijer JGB, Van Leeuwen NC, den Nijs HC (1996) Reproductive success and clonal genetic structure of the rare Arnica montana (Compositae) in The Netherlands. Plant Syst Evol 201:15–30.  https://doi.org/10.1007/BF00989049 CrossRefGoogle Scholar
  45. Luijten SH, Dierick A, Oostermeijer JGB, Raijmann LL, den Nijs HC (2000) Population size, genetic variation, and reproductive success in a rapidly declining, self-incompatible perennial (Arnica montana) in The Netherlands. Conserv Biol 14:1776–1787.  https://doi.org/10.1111/j.1523-1739.2000.99345.x CrossRefGoogle Scholar
  46. Luijten SH, Kéry M, Oostermeijer JGB, den Nijs H (2002) Demographic consequences of inbreeding and outbreeding in Arnica montana: a field experiment. J Ecol 90:593–603.  https://doi.org/10.1046/j.1365-2745.2002.00703.x CrossRefGoogle Scholar
  47. Luikart G, Ryman N, Tallmon DA, Schwartz MK, Allendorf FW (2010) Estimation of census and effective population sizes: the increasing usefulness of DNA-based approaches. Conserv Genet 11:355–373.  https://doi.org/10.1007/s10592-010-0050-7 CrossRefGoogle Scholar
  48. Lynch M (1991) The genetic interpretation of inbreeding depression and outbreeding depression. Evolution 45:622–629.  https://doi.org/10.1111/j.1558-5646.1991.tb04333.x CrossRefPubMedGoogle Scholar
  49. Martin H, Touzet P, Van Rossum F, Delalande D, Arnaud J-F (2016) Phylogeographic pattern of range expansion and evidence for cryptic species lineages in Silene nutans in western Europe. Heredity 116:286–294.  https://doi.org/10.1038/hdy.2015.100 CrossRefPubMedGoogle Scholar
  50. Martin H, Touzet P, Dufay M, Godé C, Schmitt E, Lahiani E, Delph LF, Van Rossum F (2017) Lineages of Silene nutans developed rapid, strong, asymmetric postzygotic reproductive isolation in allopatry. Evolution 71:1519–1531.  https://doi.org/10.1111/evo.13245 CrossRefPubMedGoogle Scholar
  51. Maschinski J, Wright SJ, Koptur S, Pinto-Torres EC (2013) When is local the best paradigm? Breeding history influences conservation reintroduction survival and population trajectories in times of extreme climate events. Biol Conserv 159:277–284.  https://doi.org/10.1016/j.biocon.2012.10.022 CrossRefGoogle Scholar
  52. Maurice T, Colling G, Muller S, Matthies D (2012) Habitat characteristics, stage structure and reproduction of colline and montane populations of the threatened species Arnica montana. Plant Ecol 213:831–842.  https://doi.org/10.1007/s11258-012-0045-1 CrossRefGoogle Scholar
  53. Maurice T, Matthies D, Muller S, Colling G (2016) Genetic structure of colline and montane populations of an endangered plant species. AOB Plants 8:plw057.  https://doi.org/10.1093/aobpla/plw057 CrossRefPubMedCentralPubMedGoogle Scholar
  54. Menges ES (2008) Restoration demography and genetics of plants: when is a translocation successful? Aust J Bot 56:187–196.  https://doi.org/10.1071/BT07173 CrossRefGoogle Scholar
  55. Mijangos JL, Pacioni C, Spencer PBS, Craig MD (2015) Contribution of genetics to ecological restoration. Mol Ecol 24:22–37.  https://doi.org/10.1111/mec.12995 CrossRefPubMedGoogle Scholar
  56. Miller JR, Hobbs RJ (2007) Habitat restoration—Do we know what we’re doing? Restor Ecol 15:382–390.  https://doi.org/10.1111/j.1526-100X.2007.00234.x CrossRefGoogle Scholar
  57. Montalvo AM, Williams SL, Rice KJ, Buchmann SL, Cory C, Handel SN, Nabhen GP, Primack R, Robichaux RH (1997) Restoration biology: a population biology perspective. Restor Ecol 5:227–290CrossRefGoogle Scholar
  58. National Institute of Standards and Technology (2005) Primer tools: Autodimer. http://www.cstl.nist.gov/strbase/AutoDimerHomepage/AutoDimerProgramHomepage.htm. Accessed 28 Nov 2014
  59. Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583–590PubMedCentralPubMedGoogle Scholar
  60. Nei M, Chesser RK (1983) Estimation of fixation indices and diversities. Ann Hum Genet 47:253–259.  https://doi.org/10.1111/j.1469-1809.1983.tb00993.x CrossRefPubMedGoogle Scholar
  61. Oostermeijer JGB, van Eijck MW, van Leeuwen NC, den Nijs JCM (1995) Analysis of the relationship between allozyme heterozygosity and fitness in the rare Gentiana pneumonanthe L. J Evol Biol 8:739–759.  https://doi.org/10.1046/j.1420-9101.1995.8060739.x CrossRefGoogle Scholar
  62. Oostermeijer JGB, Luijten SH, Ellis-Adam AC, den Nijs JCM (2002) Future prospects for the rare, late-flowering Gentianella germanica and Gentianopsis ciliata in Dutch nutrient-poor calcareous grasslands. Biol Conserv 104:339–350.  https://doi.org/10.1016/S0006-3207(01)00199-9 CrossRefGoogle Scholar
  63. Oostermeijer JGB, Luijten SH, den Nijs JCM (2003) Integrating demographic and genetic approaches in plant conservation. Biol Conserv 113:389–398.  https://doi.org/10.1016/S0006-3207(03)00127-7 CrossRefGoogle Scholar
  64. Ottewell KM, Bickerton DC, Byrne M, Lowe AJ (2016) Bridging the gap: a genetic assessment framework for population-level threatened plant conservation prioritization and decision-making. Divers Distrib 22:174–188.  https://doi.org/10.1111/ddi.12387 CrossRefGoogle Scholar
  65. Oxelman B, Liden M, Berglund D (1997) Chloroplast rps16 intron phylogeny of the tribe Sileneae (Caryophyllaceae). Plant Syst Evol 206:393–410.  https://doi.org/10.1007/BF00987959 CrossRefGoogle Scholar
  66. Parks JC, Werth CR (1993) A study of spatial features of clones in a population of bracken fern, Pteridium aquilinum (Dennstaedtiaceae). Am J Bot 80:537–544CrossRefPubMedGoogle Scholar
  67. Petit RJ, Duminil J, Fineschi S, Hampe A, Salvini D, Vendramin GG (2005) Comparative organisation of chloroplast, mitochondrial and nuclear diversity in plant populations. Mol Ecol 14:689–701.  https://doi.org/10.1111/j.1365-294X.2004.02410.x CrossRefPubMedGoogle Scholar
  68. Pielou EC (1969) An introduction to mathematical ecology. Wiley, New YorkGoogle Scholar
  69. Pierson JC, Coates DJ, Oostermeijer JGB, Beissinger SR, Bragg JG, Sunnucks P, Schumaker NH, Young AG (2016) Genetic factors in threatened species recovery plans on three continents. Front Ecol Environ 14:433–440.  https://doi.org/10.1002/fee.1323 CrossRefGoogle Scholar
  70. Pritchard JK, Wen W (2002) Documentation for structure software: version 2. http://pritch.bsd.uchicago.edu. Accessed 30 Sept 2017
  71. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:949–959Google Scholar
  72. Raabová J, Van Rossum F, Jacquemart A-L, Raspé O (2015) Population size affects genetic diversity and fine-scale spatial genetic structure in the clonal distylous herb Menyanthes trifoliata. Perspect Plant Ecol 17:193–200.  https://doi.org/10.1016/j.ppees.2015.02.005 CrossRefGoogle Scholar
  73. Reckinger C, Colling G, Matthies D (2010) Restoring populations of the endangered plant Scorzonera humilis: influence of site conditions, seed source, and plant stage. Restor Ecol 18:904–913.  https://doi.org/10.1111/j.1526-100X.2009.00522.x CrossRefGoogle Scholar
  74. Reynolds J, Weir BS, Cockerham CC (1983) Estimation of the coancestry coefficient: basis for a short-term genetic distance. Genetics 105:767–779PubMedCentralPubMedGoogle Scholar
  75. Rice WR (1989) Analysing tables of statistical tests. Evolution 43:223–225.  https://doi.org/10.2307/2409177 CrossRefPubMedGoogle Scholar
  76. Rosenberg NA (2004) DISTRUCT: a program for the graphical display of population structure. Mol Ecol Notes 4:137–138.  https://doi.org/10.1046/j.1471-8286.2003.00566.x CrossRefGoogle Scholar
  77. Rossetto M, Rymer PD (2013) Applications of molecular markers in plant conservation. In: RJ, Henry (eds) Molecular markers in plants. Wiley, Ames, pp 81–98.  https://doi.org/10.1002/9781118473023.ch6 CrossRefGoogle Scholar
  78. Rozen S, Skaletsky HJ (2000) Primer 3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Bioinformatics methods and protocols: methods in molecular biology. Humana Press, Totowa, pp 365–386Google Scholar
  79. Saintenoy-Simon J, Barbier Y, Delescaille L-M, Dufrêne M, Gathoye J-L, Verté P (2006) Première liste des espèces rares, menacées et protégées de la Région Wallonne (Ptéridophytes et Spermatophytes). Version 1 (7/3/2006). http://biodiversite.wallonie.be/fr/plantes-protegees-et-menacees.html?IDC=3076. Accessed 5 June 2018
  80. Sang T, Crawford DJ, Stuessy TF (1997) Chloroplast DNA phylogeny, reticulate evolution and biogeography of Paeonia (Paeoniaceae). Am J Bot 84:1120–1136CrossRefPubMedGoogle Scholar
  81. Sgrò CM, Andrew J, Lowe AJ, Hoffmann AA (2011) Building evolutionary resilience for conserving biodiversity under climate change. Evol Appl 4:326–337.  https://doi.org/10.1111/j.1752-4571.2010.00157.x CrossRefPubMedGoogle Scholar
  82. Shaw J, Lickey EB, Beck JT et al (2005) The tortoise and the hare II: relative utility of 21 noncoding chloroplast DNA sequences for phylogenetic analysis. Am J Bot 92:142–166.  https://doi.org/10.3732/ajb.92.1.142 CrossRefPubMedGoogle Scholar
  83. Somme L, Raabová J, Jacquemart A-L, Raspé O (2012) Development and multiplexing of microsatellite markers using pyrosequencing in the clonal plant Comarum palustre (Rosaceae). Mol Ecol Resour 12:91–97.  https://doi.org/10.1111/j.1755-0998.2011.03072.x CrossRefPubMedGoogle Scholar
  84. StatSoft Inc (2010) STATISTICA (data analysis software system), version 10. http://www.statsoft.com. Accessed 01 Dec 2017
  85. Strykstra RJ, Pegtel DM, Bergsma A (1998) Dispersal distance and achene quality of the rare anemochorous species Arnica montana L.: implications for conservation. Acta Bot Neerl 47:45–56Google Scholar
  86. Tate JA, Simpson BB (2003) Paraphyly of Tarasa (Malvaceae) and diverse origins of the polyploid species. Syst Bot 28:723–737.  https://doi.org/10.1043/02-64.1 CrossRefGoogle Scholar
  87. Thompson K, Bakker JP, Bekker RM (1997) Soil seed banks of North West Europe: methodology, density and longevity. Cambridge University Press, CambridgeGoogle Scholar
  88. Van Geert A, Van Rossum F, Triest L (2008) Genetic diversity in adult and seedling populations of Primula vulgaris in a fragmented agricultural landscape. Conserv Genet 9:845–853.  https://doi.org/10.1007/s10592-007-9409-9 CrossRefGoogle Scholar
  89. Van Geert A, Van Rossum F, Triest L (2010) Do linear landscape elements in farmland act as biological corridors for pollen dispersal? J Ecol 98:178–187.  https://doi.org/10.1111/j.1365-2745.2009.01600.x CrossRefGoogle Scholar
  90. Van Geert A, Van Rossum F, Triest L (2015) Perspectives for genetic rescue of the extremely fragmented Primula vulgaris populations in The Netherlands: reflecting the future of Belgian populations? Plant Ecol Evol 148:329–334.  https://doi.org/10.5091/plecevo.2015.1101 CrossRefGoogle Scholar
  91. Van Landuyt W, Hoste I, Vanhecke L, Van den Bremt P, Vercruysse W, De Beer D (2006) Atlas van de Flora van Vlaanderen en het Brussels Gewest. INBO, Nationale Plantentuin van België & Flo.Wer, Brussel/MeiseGoogle Scholar
  92. van Oosterhout C, Hutchinson B, Wills D, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538.  https://doi.org/10.1111/j.1471-8286.2004.00684.x CrossRefGoogle Scholar
  93. Van Rossum F (2008) Conservation of long-lived perennial forest herbs in an urban context: Primula elatior as study case. Conserv Genet 9:119–128.  https://doi.org/10.1007/s10592-007-9314-2 CrossRefGoogle Scholar
  94. Van Rossum F (2009) Pollen dispersal and genetic variation in an early-successional forest herb in a peri-urban forest. Plant Biol 11:725–737.  https://doi.org/10.1111/j.1438-8677.2008.00176.x CrossRefPubMedGoogle Scholar
  95. Van Rossum F, Triest L (2003) Spatial genetic structure and reproductive success in fragmented and continuous populations of Primula vulgaris. Folia Geobot 38:239–254.  https://doi.org/10.1007/BF02803196 CrossRefGoogle Scholar
  96. Van Rossum F, Triest L (2012) Stepping-stone populations in linear landscape elements increase pollen dispersal between urban forest fragments. Plant Ecol Evol 145:332–340.  https://doi.org/10.5091/plecevo.2012.737 CrossRefGoogle Scholar
  97. Van Rossum F, Campos De Sousa S, Triest L (2004) Genetic consequences of habitat fragmentation in an agricultural landscape on the common Primula veris, and comparison with its rare congener, P. vulgaris. Conserv Genet 5:231–245.  https://doi.org/10.1023/B:COGE.0000030007.85492.70 CrossRefGoogle Scholar
  98. Van Rossum F, Campos De Sousa S, Triest L (2006) Morph-specific fitness differences in the distylous Primula veris in a context of habitat fragmentation. Acta Oecol 30:426–433.  https://doi.org/10.1016/j.actao.2006.06.005 CrossRefGoogle Scholar
  99. Vander Mijnsbrugge K, Bischoff A, Smith B (2010) A question of origin: where and how to collect seed for ecological restoration. Basic Appl Ecol 11:300–311.  https://doi.org/10.1016/j.baae.2009.09.002 CrossRefGoogle Scholar
  100. Vekemans X, Lefèbvre C (1997) On the evolution of heavy-metal tolerant populations in Armeria maritima: evidence from allozyme variation and reproductive barriers. J Evol Biol 10:175–191.  https://doi.org/10.1046/j.1420-9101.1997.10020175.x CrossRefGoogle Scholar
  101. Ward JH (1963) Hierarchical grouping to optimize an objective function. J Am Stat Assoc 58:236–244CrossRefGoogle Scholar
  102. Weeks AR, Sgro CM, Young AG, Frankham R, Mitchell NL, Miller KA, Byrne M, Coates DJ, Eldridge MDB, Sunnuck P, Breed MF, James EA, Hoffmann AA (2011) Assessing the benefits and risks of translocations in changing environments: a genetic perspective. Evol Appl 4:709–725.  https://doi.org/10.1111/j.1752-4571.2011.00192.x CrossRefPubMedCentralPubMedGoogle Scholar
  103. Weir BS (1990) Genetic data analysis. Sinauer, SunderlandGoogle Scholar
  104. Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370PubMedGoogle Scholar
  105. Whiteley AR, Fitzpatrick SW, Funk WC, Tallmon DA (2015) Genetic rescue to the rescue. Trends Ecol Evol 30:42–49.  https://doi.org/10.1016/j.tree.2014.10.009 CrossRefPubMedGoogle Scholar
  106. Willi Y, Van Buskirk J, Fischer M (2005) A threefold genetic allee effect: population size affects cross-compatibility, inbreeding depression and drift load in the self-incompatible Ranunculus reptans. Genetics 169:2255–2265.  https://doi.org/10.1534/genetics.104.034553 CrossRefPubMedCentralPubMedGoogle Scholar
  107. Willi Y, van Kleunen M, Dietrich S, Fischer M (2007a) Genetic rescue persists beyond first-generation outbreeding in small populations of a rare plant. Proc R Soc B 274:2357–2364.  https://doi.org/10.1098/rspb.2007.0768 CrossRefPubMedGoogle Scholar
  108. Willi Y, Van Buskirk J, Schmid B, Fischer M (2007b) Genetic isolation of fragmented populations is exacerbated by drift and selection. J Evol Biol 20:534–542.  https://doi.org/10.1111/j.1420-9101.2006.01263.x CrossRefPubMedGoogle Scholar
  109. Zavodna M, Abdelkrim J, Pellissier V, Machon N (2015) A long-term genetic study reveals complex population dynamics of multiple-source plant reintroductions. Biol Conserv 192:1–9.  https://doi.org/10.1016/j.biocon.2015.08.025 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Botanic Garden MeiseMeiseBelgium
  2. 2.Fédération Wallonie-Bruxelles, Service général de l’Enseignement supérieur et de la Recherche scientifiqueBrusselsBelgium
  3. 3.Ecology and Biodiversity, Department of BiologyVrije Universiteit BrusselBrusselsBelgium

Personalised recommendations