Advertisement

Conservation Genetics

, Volume 19, Issue 5, pp 1169–1184 | Cite as

Genetic characterization of free-ranging Asiatic wild ass in Central Asia as a basis for future conservation strategies

  • Petra Kaczensky
  • Ekaterina Kovtun
  • Rustam Habibrakhmanov
  • Mahmoud-Reza Hemami
  • Amirhossein Khaleghi
  • John D. C. Linnell
  • Eldar Rustamov
  • Sergey Sklyarenko
  • Chris Walzer
  • Steffen Zuther
  • Ralph Kuehn
Research Article

Abstract

Loss of genetic diversity due to drift and inbreeding reduces a population’s ability to respond to environmental change and may result in inbreeding depression. The Asiatic wild ass (Equus hemionus), regionally also known as Gobi khulan, Turkmen kulan, or Persian onager, has become confined to less than 3% of its historic distribution range. Remaining populations in Central Asia outside of the Mongolian Gobi are small and fragmented. Questions concerning subpopulation status remain disputed and concerns over the viability of these populations have been raised because of small size, past bottlenecks, or recent founder events. We used non-invasive faecal samples to assess the genetic diversity and divergence among Turkmen kulan and Persian onager from five free-ranging and one captive population from Turkmenistan, Kazakhstan and Iran and compared their genetic constitution to the large autochthonous population in the Mongolian Gobi. We observed loss of genetic diversity (drift and inbreeding) in the captive and reintroduced populations as well as in one rapidly declining autochthonous population. Population differentiation and structure using microsatellites and mtDNA based phylogenetic analysis do not support the current separation of the autochthonous populations of Turkmen kulan and Persian onager into different subspecies, but rather suggest a cline with the Iranian population in Bahram-e-Goor at the southern end and the Turkmen population in Badhyz at the northern end falling into two distinct clusters, and the northern Iranian population in Touran being intermediate. We compare our findings to other population genetics studies of equids and discuss the implications of our findings for the future conservation of the Asiatic wild ass in the region.

Keywords

Asiatic wild ass Equus hemionus Microsatellites MtDNA Inbreeding Reintroduction 

Notes

Acknowledgements

In Kazakhstan work was carried out under a Memorandum of Understanding (MoU) between the Association for the Conservation of Biodiversity of Kazakhstan (ACBK) and the Ministry of Agriculture. We are grateful for support from Altyn Emel National Park staff, particularly K. Bayadilov. In Turkmenistan work was carried out under the MoU between the Ministry of Nature Protection of Turkmenistan and the Royal Society for the Protection of Birds (RSPB), dated 13 February 2014, to protect birds and other biodiversity in Turkmenistan. J. Saparmuradov, K. Annagulyev, S. Karryeva, N. Khudaykuliyev, I. Ishanov, C. Durdyev, A. Veyisov, (A) Kurbanov, P. Azat, and K. Maksat were instrumental while additional information was provided by V. Kuznetsov. RSPB staff M. Day, S. Ward, E. Ball, and G. Welch provided us with much needed logistical support and background information. In Iran work was carried out under a MoU between the Department of Natural Resources at the Isfahan University of Technology (IUT) and the Research Institute of Wildlife Ecology (FIWI) of the University of Veterinary Medicine, Vienna. We are grateful to M. Nosrati, (B) Shahriari, M. Hosseini, M.G. Marashi, B. Jourabchian (Department of Environment (DoE) Headquarters, Tehran), H. Valavi, F. Hooman, L. Joulaie, H. Ebrahimi, M. Mohammadjani, A. Rastegar, M. Ranjbar, A.A. Ghorbanloo (Fars DoE), M. Teymouri (Yazd DoE), (A) Damangir, (B) Zaheri, M. Adibi (Semnan DoE), as well as S. Esmaili, M. Momeni, and S. Hering-Hagenbeck. Funding for this work came from the Verband der Zoologischen Gärten, RSPB, Nuremberg Zoo, FIWI, the Research Council of Norway (Grant 251112) and the Norwegian Institute for Nature Research. The molecular and population genetic analyses were carried out at Unit of Molecular Zoology, Chair of Zoology, Technische Universität München.

Supplementary material

10592_2018_1086_MOESM1_ESM.docx (227 kb)
Supplementary material 1 (DOCX 226 KB)

References

  1. Armbruster P, Reed DH (2005) Inbreeding depression in benign and stressful environments. J Hered 95:235–242CrossRefGoogle Scholar
  2. Armstrong DP, Cassey P (2007) Estimating the effect of inbreeding on survival. Anim Conserv 10:487–492CrossRefGoogle Scholar
  3. Bannikov AG (1981) The Asian Wild Ass. Lesnaya Promyshlennost, Moscow, Russia [Original in Russian, English translation by M. Proutkina, Zoological Society of San Diego]Google Scholar
  4. Bennett EA, Champlot S, Peters J, Arbuckle BS, Guimaraes S, Pruvost M, Bar-David S, Davis SJM, Gautier M, Kaczensky P, Kuehn R, Mashkour M, Morales-Muniz A, Pucher E, Tournepiche JF, Uerpmann HP, Balasescu A, Germonpre M, Gundem CY, Hemami MR, Moulle PE, Otzan A, Uerpmann M, Walzer C, Grange T, Geigl EM (2017) Taming the late quaternary phylogeography of the Eurasiatic wild ass through ancient and modern DNA. PLoS ONE 12:e0174216CrossRefPubMedPubMedCentralGoogle Scholar
  5. Brook BW, Tonkyn DW, O’Grady JJ, Frankham R (2002) Contribution of inbreeding to extinction risk in threatened species. Cons Ecol 6(1):16eGoogle Scholar
  6. Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2014PubMedPubMedCentralGoogle Scholar
  7. David P, Pujol B, Viard F, Castella V, Goudet J (2007) Reliable selfing rate estimates from imperfect population genetic data. Mol Ecol 16:2474–2487CrossRefPubMedGoogle Scholar
  8. Denzau G, Denzau H (1999) Wildesel. Jan Thorbecke Verlag, Stuttgart (in German)Google Scholar
  9. DeWoody JA, Schupp J, Kenefic L, Busch J, Murfitt L, Keim P (2004) Universal method for producing ROX-labeled size standards suitable for automated genotyping. Biotechniques 37:348–351CrossRefPubMedGoogle Scholar
  10. Earl DA, von Holdt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361CrossRefGoogle Scholar
  11. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 14:2611–2620CrossRefPubMedGoogle Scholar
  12. Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491PubMedPubMedCentralGoogle Scholar
  13. Excoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evol Bioinform 1:47–50CrossRefGoogle Scholar
  14. Frankham R (1995) Conservation genetics. Annu Rev Genet 29:305–327CrossRefPubMedGoogle Scholar
  15. Frankham R (2003) Genetics and conservation biology. C R Biol 326:22–29CrossRefGoogle Scholar
  16. Funk WC, McKay JK, Hohenlohe PA, Allendorf FW (2012) Harnessing genomics for delineating conservation units. Trends Ecol Evol 27(9):489–496CrossRefPubMedPubMedCentralGoogle Scholar
  17. Garza JC, Williamson EG (2001) Detection of reduction in population size using data from microsatellite loci. Mol Ecol 10:305–318CrossRefPubMedGoogle Scholar
  18. Geist J, Kuehn R (2008) Host-parasite interactions in oligotrophic stream ecosystems: the roles of life-history strategy and ecological niche. Mol Ecol 17:997–1008CrossRefPubMedGoogle Scholar
  19. Goudet J (2001) FSTAT, a Program to Estimate and Test Gene Diversities and Fixation Indices version 2.9.3. http://www2.unil.ch/popgen/softwares/fstat.htm. Accessed 15 May 2014
  20. Gueta T, Templeton AR, Bar-David S (2014) Development of genetic structure in a heterogeneous landscape over a short time frame: the reintroduced Asiatic wild ass. Conserv Genet 15:1231–1242CrossRefGoogle Scholar
  21. Hamadanian A (2005) Onagers (Equus hemionus onager) in Iran, wild and captive. Zool Garten 75:1–3Google Scholar
  22. Hamidi AhK, Jowkar H, Nabiyan M (2012) Anthropogenic Threats to Persian Onager (Equus hemionus onager) in Iran. In: Kaczensky P, Ransom J (eds). International wild equid conference—book of abstracts. Conference in Vienna, Austria from 12 to 22 September 2012. Research Institute of Wildlife Ecology, University of Veterinary Medicine, ViennaGoogle Scholar
  23. Hausknecht R, Bayerl H, Gula R, Kuehn R (2010) Application of quantitative real-time polymerase chain reaction for noninvasive genetic monitoring. J Wildl Manag 74:1904–1910CrossRefGoogle Scholar
  24. Hausknecht R, Jacobs S, Müller J, Zink R, Frey H, Solheim R, Vrezec A, Kristin A, Mihok J, Kergalve I, Saurola P, Kuehn R (2014) Phylogeographic analysis and genetic cluster recognition for the conservation of Ural Owls (Strix uralensis) in Europe. J Ornithol 155:121–134CrossRefGoogle Scholar
  25. Hemami M-R, Momeni M (2013) Estimating abundance of the endangered onager Equus hemionus onager in Qatruiyeh National Park, Iran. Oryx 47:266–272CrossRefGoogle Scholar
  26. Hemami M-R, Esmaeili S, Momeni M, Bagheri M (2012) The status of Persian Wild Ass: threats and the conservation needs. In: Kaczensky P, Ransom J (eds). International wild equid conference—book of abstracts. Conference in Vienna, Austria from 12 to 22 September 2012. Research Institute of Wildlife Ecology, University of Veterinary Medicine, ViennaGoogle Scholar
  27. Hemami M, Kaczensky P, Lkhagvasuren B, Pereladova O, Bouskila A (2015) Equus hemionus ssp. onager. The IUCN Red List of Threatened Species 2015: e.T7966A3144941. http://www.iucnredlist.org/details/7966/0. Accessed 10 Nov 2015
  28. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978CrossRefGoogle Scholar
  29. Hoelzel AR, Fleischer RC, Campagna C, Le Boef BJ, Alvord G (2002) Impact of a population bottleneck on symmetry and genetic diversity in the northern elephant seal. J Evol Biol 15:567–575CrossRefGoogle Scholar
  30. Ingman M, Kaessmann H, Pääbo S, Gyllensten U (2000) Mitochondrial genome variation and the origin of modern humans. Nature 408:708–713CrossRefPubMedGoogle Scholar
  31. Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801–1806CrossRefPubMedGoogle Scholar
  32. Jamieson IG (2011) Founder effects, inbreeding, and loss of genetic diversity in four avian reintroduction programs. Conserv Biol 25:115–123CrossRefPubMedGoogle Scholar
  33. Jombart T (2008) adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24:1403–1405CrossRefPubMedGoogle Scholar
  34. Jombart T, Devillard S, Balloux F (2010) Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet 11:94CrossRefPubMedPubMedCentralGoogle Scholar
  35. Jost L (2008) GST and its relatives do not measure differentiation. Mol Ecol 17:4015–4026CrossRefPubMedGoogle Scholar
  36. Kaczensky P, Linnell JDC (2015) Rapid assessment of the mammalian community of the Badhyz Ecosystem, Turkmenistan, October 2014. Norwegian Institute for Nature Research, TrondheimGoogle Scholar
  37. Kaczensky P, Kuehn R, Lhagvasuren B, Pietsch S, Yang W, Walzer C (2011) Connectivity of the Asiatic wild ass population in the Mongolian. Gobi Biol Conserv 144:920–929CrossRefPubMedGoogle Scholar
  38. Kaczensky P, Lkhagvasuren B, Pereladova O, Hemami M-R, Bouskila A (2015) Equus hemionus. The IUCN Red List of Threatened Species 2015: e.T7951A45171204. http://dx.doi.org/10.2305/IUCN.UK.2015-4.RLTS.T7951A45171204.en. Accessed 10 Nov 2015
  39. Kaczensky P, Lkhagvasuren B, Pereladova O, Hemami M, Bouskila A (2016a) Equus hemionus ssp. kulan. The IUCN Red List of Threatened Species 2016: e.T7964A3144714. http://www.iucnredlist.org/details/7964/0. Accessed 30 Jul 2016
  40. Kaczensky P, Hrabar H, Lukarevski V, Zimmermann W, Usukhjargal D, Ganbaatar O, Bouskila A (2016b) Reintroduction of wild equids. In: Ransom JI, Kaczensky P (eds) Wild equids—ecology, management, and conservation. Johns Hopkins University Press, Baltimore, pp 196–214Google Scholar
  41. Kaczensky P, Doldin R, Enke D, Linnell JDC, Lukanovsky O, Salemgareyev AR, Sidorova TV, Sklyarenko S, Kisebaev T, Walzer C, Ward S, Zuther S (2017) Feasibility study for kulan (Equus hemionus kulan) reintroduction into the central steppe of Kazakhstan. Norwegian Institute for Nature Research, TrondheimGoogle Scholar
  42. Khaire D, Atkulwar A, Farah S, Baig M (2017) Mitochondrial DNA analyses revealed low genetic diversity in the endangered Indian wild ass Equus hemionus khur. Mitochondrial DNA Part A 28(5):681–686CrossRefGoogle Scholar
  43. Kuehn R, Schroeder W, Pirchner F, Rottmann O (2003) Genetic diversity, gene flow and drift in Bavarian red deer populations (Cervus elaphus). Conserv Genet 4:157–166CrossRefGoogle Scholar
  44. Kuehn R, Haller H, Schroeder W, Rottmann O (2004) Genetic roots of the red deer (Cervus elaphus) population in Eastern Switzerland. J of Heredity 95(2):136–143CrossRefGoogle Scholar
  45. Kuehn R, Kaczensky P, Lkhagvasuren D, Walzer C (2006) Differentiation of Meat Samples from Domestic Horses (Equus caballus) and Asiatic Wild Asses (Equus hemionus) Using a Species-Specific Restriction Site in the Mitochondrial Cytochrome b Region. Mongolian J Biol Sciences 4:57–62Google Scholar
  46. Kuehn R, Hindenlang KE, Holzgang O, Senn J, Stoeckle B, Sperisen C (2007) Genetic effect of transportation infrastructure on roe deer populations (Capreolus capreolus). J Hered 98:13–22CrossRefPubMedGoogle Scholar
  47. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for Bigger Datasets. Mol Biol Evol 33:1870–1874CrossRefPubMedPubMedCentralGoogle Scholar
  48. Levanov VF, Sokolov SV, Kaczensky P (2013) Corral mass capture device for Asiatic wild asses Equus hemionus. Wildl Biol 19:325–334CrossRefGoogle Scholar
  49. Librado P, Der Sarkissian C, Ermini L, Schubert M, Jonsson H, Albrechtsen A, Fumagalli M, Yang MA, Gamba C, Seguin-Orlando A, Mortensen CD, Petersen B, Hoover CA, Lorente-Galdos B, Nedoluzhko A, Boulygina E, Tsygankova S, Neuditschko M, Jagannathan V, Theves C, Alfarhan AH, Alquraishi SA, Al-Rasheid KA, Sicheritz-Ponten T, Popov R, Grigoriev S, Alekseev AN, Rubin EM, McCue M, Rieder S, Leeb T, Tikhonov A, Crubezy E, Slatkin M, Marques-Bonet T, Nielsen R, Willerslev E, Kantanen J, Prokhortchouk E, Orlando L (2015) Tracking the origins of Yakutian horses and the genetic basis for their fast adaptation to subarctic environments. Proc Natl Acad Sci USA 112:E6889–E6897CrossRefPubMedGoogle Scholar
  50. Linnell JDC, Trouwborst A, Boitani L, Kaczensky P, Huber D, Reljic S, Kusak J, Majic A, Skrbinsek T, Potocnik H, Hayward MW, Milner-Gulland EJ, Buuveibaatar B, Olson KA, Badamjav L, Bischof R, Zuther S, Breitenmoser U (2016) Border Security fencing and wildlife: the end of the trans-boundary paradigm in Eurasia? PLoS Biol 14:e1002483CrossRefPubMedPubMedCentralGoogle Scholar
  51. Lorenzen ED, Arctander P, Siegismund HR (2008) High variation and very low differentiation in wide ranging plains zebra (Equus quagga): insights from mtDNA and microsatellites. Mol Ecol 17:2812–2824CrossRefPubMedGoogle Scholar
  52. Lukarevski VS, Gorelov YK (2007) Khulan (Equus hemionus Pallas 1775) in Turkmenistan. Explor Biol Resour Mongolia 10:231–240Google Scholar
  53. Luo Z, Jiang Z, Tang S (2015) Impacts of climate change on distributions and diversity of ungulates on the Tibetan Plateau. Ecol Appl 25:24–38CrossRefPubMedGoogle Scholar
  54. Oakenfull EA, Lim HN, Ryder OA (2000) A survey of equid mitochondrial DNA: Implications for the evolution, genetic diversity and conservation of Equus. Cons Gen 1:341–355CrossRefGoogle Scholar
  55. Pavlov MP (1996) Translocations of kulans in the former Soviet Union. Newsletter of the Re-introduction specialist group of IUCN’. Species Survival Comm 12:15–16Google Scholar
  56. Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28:2537–2539CrossRefPubMedPubMedCentralGoogle Scholar
  57. Pearman PB, Garner TWJ (2005) Susceptibility of Italian agile frog populations to an emerging strain of Ranavirus parallels population genetic diversity. Ecol Lett 8:401–408CrossRefGoogle Scholar
  58. Peery MZ, Kirby R, Reid BN, Stoeling R, Doucet-Bëer E, Robinson S, Vásquez-Carillo C, Pauli JN, Palsbøll PJ (2012) Reliability of genetic bottleneck tests for detecting recent population declines. Mol Ecol 21:3403–3418CrossRefPubMedGoogle Scholar
  59. Petit RJ, Mousadik El, Pons O (1998) Identifying populations for conservation on the basis of genetic markers. Conserv Biol 12:844–855CrossRefGoogle Scholar
  60. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedPubMedCentralGoogle Scholar
  61. Puechmaille SJ (2016) The program STRUCTURE does not reliably recover the correct population structure when sampling is uneven: subsampling and new estimators alleviate the problem. Mol Ecol Resour 16:608–627CrossRefPubMedGoogle Scholar
  62. Ransom JI, Lagos L, Hrabar H, Nowzari H, Usukhjargal D, Spasskaya N (2016) Wild and feral equid population dynamics. In: Ransom JI, Kaczensky P (eds) Wild Equids—ecology, management, and conservation. Johns Hopkins University Press, Baltimore, pp 87–104Google Scholar
  63. Raymond M, Rousset F (1995) Genepop (Version-1.2) population-genetics software for exact tests and ecumenicism. J Hered 86:248–249CrossRefGoogle Scholar
  64. Renan S, Greenbaum G, Shahar N, Templeton AR, Bouskila A, Bar-David S (2015) Stochastic modelling of shifts in allele frequencies reveals a strongly polygynous mating system in the re-introduced Asiatic wild ass. Mol Ecol 24:1433–1446CrossRefPubMedGoogle Scholar
  65. Rosenbom S, Costa V, Chen S, Khalatbari L, Yusefi GH, Abdukadir A, Yangzom C, Kebede F, Teclai R, Yohannes H, Hagos F, Moehlman PD, Beja-Pereira A (2015) Reassessing the evolutionary history of ass-like equids: insights from patterns of genetic variation in contemporary extant populations. Mol Phylogenet Evol 85:88–96CrossRefPubMedGoogle Scholar
  66. Rubidge M. Patton JL, Lim M, Burton AC, Brashares JS, Moritz C (2012) Climate-induced range contraction drives genetic erosion in an alpine mammal. Nature Clim Change 2:285–288CrossRefGoogle Scholar
  67. Sasidharan SP, Ludwig A, Harper C, Moodley Y, Bertschinger HJ, Guthrie AJ (2011) Comparative genetics of sarcoid tumour-affected Cape mountain zebra (Equus zebra) populations. S Afr J Wildl Res 41:36–49CrossRefGoogle Scholar
  68. Taberlet P, Luikart G (1999) Non-invasive genetic sampling and individual identification. Biol J Linn Soc 68:41–55CrossRefGoogle Scholar
  69. Tamura K (1992) Estimation of the number of nucleotide substitutions when there are strong transition-transversion and G + C-content biases. Mol Biol Evol 9:678–687PubMedGoogle Scholar
  70. Tatin L, King SRB, Munkhtuya B, Hewison AJM, Feh C (2009) Demography of a socially natural herd of Przewalski’s horses: an example of a small, closed population. J Zool 277:134–140CrossRefGoogle Scholar
  71. Tracy LN, Wallis GP, Efford MG, Jamieson IG (2011) Preserving genetic diversity in threatened species reintroductions: how many individuals should be released? Anim Conserv 14:439–446CrossRefGoogle Scholar
  72. Udvardy MDF (1975) A Classification of the Biogeographical Provinces of the World. IUCN Occasional Paper No. 18, Morges, SwitzerlandGoogle Scholar
  73. van Oosterhout C, Hutchinson WF, Wills DP, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538CrossRefGoogle Scholar
  74. Volf J (2010) Sixty years of kulan, Equus hemionus kulan (Groves et Mazák, 1967) breeding at Prague Zoo. Equus 30–55Google Scholar
  75. Whitlock MC (2011) G’ST and D do not replace FST. Mol Ecol 20:1083–1091CrossRefPubMedGoogle Scholar
  76. Wright ES (2015) DECIPHER: harnessing local sequence context to improve protein multiple sequence alignment. BMC Bioinform 16:322CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Petra Kaczensky
    • 1
    • 2
  • Ekaterina Kovtun
    • 3
  • Rustam Habibrakhmanov
    • 4
  • Mahmoud-Reza Hemami
    • 5
  • Amirhossein Khaleghi
    • 6
  • John D. C. Linnell
    • 2
  • Eldar Rustamov
    • 7
  • Sergey Sklyarenko
    • 8
  • Chris Walzer
    • 1
    • 9
  • Steffen Zuther
    • 8
  • Ralph Kuehn
    • 3
    • 10
  1. 1.Research Institute of Wildlife EcologyUniversity of Veterinary MedicineViennaAustria
  2. 2.Norwegian Institute for Nature ResearchTrondheimNorway
  3. 3.Unit of Molecular Zoology, Chair of Zoology, Department of Ecology and Ecosystem ManagementTechnische Universität MünchenFreisingGermany
  4. 4.Altyn Emel National Park, Almaty officeAlmatyKazakhstan
  5. 5.Department of Natural ResourcesIsfahan University of TechnologyIsfahanIran
  6. 6.Persian Wildlife Heritage FoundationTehranIran
  7. 7.AshgabatTurkmenistan
  8. 8.Association for the Conservation of Biodiversity of KazakhstanAlmatyKazakhstan
  9. 9.Wildlife Conservation SocietyNew YorkUSA
  10. 10.Department of Fish, Wildlife and Conservation EcologyNew Mexico State UniversityLas CrucesUSA

Personalised recommendations