Advertisement

Conservation Genetics

, Volume 19, Issue 5, pp 1069–1081 | Cite as

Considering evolutionary processes in cycad conservation: identification of evolutionarily significant units within Dioon sonorense (Zamiaceae) in northwestern Mexico

  • José Said Gutiérrez-Ortega
  • Karen Jiménez-Cedillo
  • Miguel Angel Pérez-Farrera
  • Andrew P. Vovides
  • José F. Martínez
  • Francisco Molina-Freaner
  • Ryosuke Imai
  • Yoshiaki Tsuda
  • Yu Matsuki
  • Yoshihisa Suyama
  • Yasuyuki Watano
  • Tadashi Kajita
Research Article

Abstract

Cycads are considered to be the most threatened plant group on Earth. Thus, the identification of important biological units for conservation is crucial for their management and protection. Taxonomic studies have enormously contributed to cycad conservation, since species descriptions formally recognize biodiversity components that can be considered in conservation. However, because multidisciplinary studies that evaluate the biodiversity within cycad species are almost non-existent intraspecific evolutionarily significant units (ESUs) have not been considered when making conservation plans. The cycad Dioon sonorense (Zamiaceae) has a relatively wide distribution range along a vegetation gradient in Northwest Mexico: the southern populations of D. sonorense occur in tropical forests, whereas the northern populations occur in more xeric environments in the Sonoran Desert. Although both habitats might have promoted important evolutionary trends within D. sonorense, only the southern populations are being conserved. Here, we evaluated whether intrinsic differentiation among populations of D. sonorense exists, and whether northern populations may merit attention in conservation programs. We analyzed the variation of genome-wide loci to evaluate the genetic structure among six populations. We found two clusters, northern and southern, that can be recognized using 361 neutral loci. Such genetic structure is consistent with the differentiation observed from the variation of 16 macromorphological and 9 epidermal traits. Southern and northern regions are clearly differentiated in genetic, morphological and anatomical analyses. These multidisciplinary results suggest that the northernmost populations of D. sonorense represent an ESU that should be included in conservation programs. This study highlights that the evaluation of intraspecific variation may contribute effective strategies for cycad conservation, and that evolutionary processes should be considered in the delimitation of conservation units.

Keywords

Cycads Dioon sonorense Evolutionarily significant units Epidermal anatomy MIG-seq Sonoran Desert 

Notes

Acknowledgements

Thanks to Takuro Ito and Sonia Galicia for technical support. We are very grateful for the revision of two anonymous reviewers who gave critical comments that helped improve the manuscript. M.A.P.F. thanks Christopher Davidson and Sharon Christoph for partial financial support. Field specimens of D. sonorense were collected under permits No. SGPA/DGVS/12198 and SGPA/DGVS/08722 from SEMARNAT, Mexico.

Funding

This study was funded by the Japan Society for the Promotion of Science (Grant in aid No. 16J11945 to J.S.G.O.) and Consejo Nacional de Ciencia y Tecnología (Grant CB-2011-01-169468 to A.P.V.).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10592_2018_1079_MOESM1_ESM.docx (11.9 mb)
Supplementary material 1 (DOCX 12218 KB)

References

  1. Álvarez-Yépiz JC, Dovčiak M, Búrquez A (2011) Persistence of a rare ancient cycad: effects of environment and demography. Biol Conserv 144:122–130CrossRefGoogle Scholar
  2. Antao T, Lopes A, Lopes RJ, Beja-Pereira A, Luikart G (2008) LOSITAN: a workbench to detect molecular adaptation based on a F-st outlier method. BMC Bioinform 9:323CrossRefGoogle Scholar
  3. Aronne G, De Micco V (2001) Seasonal dimorphism in the Mediterranean Cistus incanus L. subsp. incanus. Ann Bot 87:789–794CrossRefGoogle Scholar
  4. Barone-Lumaga MR, Coiro M, Truernit E, Erdei B, De Luca P (2015) Epidermal micromorphology in Dioon: did volcanism constrain Dioon evolution? Bot J Linn Soc 179:236–254CrossRefGoogle Scholar
  5. Beaumont MA (2005) Adaptation and speciation: what can FST tell us? Trends Ecol Evol 20:435–440CrossRefPubMedGoogle Scholar
  6. Cabrera-Toledo D, González-Astorga J, Vovides AP (2008) Heterozygote excess in ancient populations of the critically endangered Dioon caputoi (Zamiaceae, Cycadales) from central Mexico. Bot J Linn Soc 158:436–447CrossRefGoogle Scholar
  7. Calonje M, Stevenson DW, Stanberg L (2017) The world list of cycads. http://www.cycadlist.org. Accessed 28 May 2017
  8. Cascasan AN, Marler TE (2016) Publishing trends for the Cycadales, the most threatened plant group. J Threatened Taxa 8:8575–8582CrossRefGoogle Scholar
  9. Castellanos-Morales G, Gutiérrez-Guerrero YT, Gámez N, Eguiarte LE (2016) Use of molecular and environmental analyses for integrated in situ and ex situ conservation: the case of the Mexican prairie dog. Biol Conserv 204:284–295CrossRefGoogle Scholar
  10. Catchen J, Hohenlohe PA, Bassham S, Amores A, Cresko WA (2013) Stacks: an analysis tool set for population genomics. Mol Ecol 22:3124–3140CrossRefPubMedPubMedCentralGoogle Scholar
  11. Chemnick J, Gregory T (2010) Dioon sonorense. The IUCN Red List of Threatened Species. http://dx.doi.org/10.2305/IUCN.UK.2010-3.RLTS.T42130A10661262.en. Accessed 28 May 2017
  12. Chemnick J, Gregory TJ, Salas Morales S (1997) A revision of Dioon tomasellii (Zamiaceae) from western Mexico, a range extension of D. merolae, and clarification of D. purpusii. Phytologia 83:1–6Google Scholar
  13. Cibrián-Jaramillo A, Daly AC, Brenner E, Desalle R, Marler TE (2010) When North and South don’t mix: genetic connectivity of a recently endangered oceanic cycad, Cycas micronesica, in Guam using EST-microsatellites. Mol Ecol 19:2364–2379PubMedGoogle Scholar
  14. Contreras-Medina R, Ruiz-Jiménez CA, Luna Vega I (2003) Caterpillars of Eumaeus childrenae (Lepidoptera: Lycaenidae) feeding on two species of cycads (Zamiaceae) in the Huasteca region. Mex Rev Biol Trop 51:201–204Google Scholar
  15. Donaldson JS (2003) Cycads: status survey and conservation action plan. IUCN, GlandGoogle Scholar
  16. Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15Google Scholar
  17. Earl DA, vonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361CrossRefGoogle Scholar
  18. Ellstrand NC, Elam DR (1993) Population genetic consequences of small population size: implications for plant conservation. Annu Rev Ecol Syst 24:217–242CrossRefGoogle Scholar
  19. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620CrossRefPubMedGoogle Scholar
  20. Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491PubMedPubMedCentralGoogle Scholar
  21. Foll M, Gaggiotti O (2008) A genome-scan method to identify selected loci appropriate for both dominant and codominant markers: a Bayesian perspective. Genetics 180:977–993CrossRefPubMedPubMedCentralGoogle Scholar
  22. García E (2004) Modificaciones al sistema de clasificación climática de Koppen. UNAM, DF (Mexico)Google Scholar
  23. González-Astorga J, Vovides AP, Ferrer MM, Iglesias C (2003) Population genetics of Dioon edule Lindl. (Zamiaceae, Cycadales): biogeographical and evolutionary implications. Bot J Linn Soc 80:457–467CrossRefGoogle Scholar
  24. González-Astorga J, Vovides AP, Cruz-Angón A, Octavio-Aguilar P, Iglesias C (2005) Allozyme variation in the three extant populations of the narrowly endemic cycad Dioon angustifolium Miq. (Zamiaceae) from North-eastern Mexico. Ann Bot 95:999–1007CrossRefPubMedPubMedCentralGoogle Scholar
  25. González-Astorga J, Vergara-Silva F, Vovides AP, Nicolalde-Morejón F, Cabrera-Toledo D, Pérez-Farrera MA (2008) Diversity and genetic structure of three species of Dioon Lindl. (Zamiaceae, Cycadales) from the Pacific Seaboard of Mexico. Bot J Linn Soc 94:765–776CrossRefGoogle Scholar
  26. González-Astorga J, Vovides AP, Cabrera-Toledo D, Nicolalde-Morejón F (2009) Diversity and genetic structure of the endangered cycad Dioon sonorense (Zamiaceae) from Sonora, Mexico: evolutionary and conservation implications. Biochem Syst Ecol 36:891–899CrossRefGoogle Scholar
  27. Gregory TJ, Chemnick J (2004) Hypotheses on the relationship between biogeography and speciation in Dioon (Zamiaceae). In: Walters T, Osborne R (eds) Cycad classification: concepts and recommendations. CABI Publishing, Wallingford, pp 137–148CrossRefGoogle Scholar
  28. Gregory TJ, Chemnick J, Salas-Morales S, Vovides AP (2003) A new species in the genus Dioon (Zamiaceae) from north-central Oaxaca, Mexico. Bot J Linn Soc 141:471–476CrossRefGoogle Scholar
  29. Gutiérrez-Ortega JS, Kajita T, Molina-Freaner FE (2014) Conservation genetics of an endangered cycad, Dioon sonorense (Zamiaceae): implications from variation of chloroplast DNA. Bot Sci 92:441–451CrossRefGoogle Scholar
  30. Gutiérrez-Ortega JS, Salinas-Rodríguez MM, Martínez JF et al (2018a) The phylogeography of the cycad genus Dioon (Zamiaceae) clarifies its Cenozoic expansion and diversification in the Mexican transition zone. Ann Bot 121:535–548CrossRefPubMedGoogle Scholar
  31. Gutiérrez-Ortega JS, Yamamoto T, Vovides AP et al (2018b) Aridification as a driver of biodiversity: a case study for the cycad genus Dioon (Zamiaceae). Ann Bot 121:47–60CrossRefGoogle Scholar
  32. Halffter G (1984) Las reservas de la biosfera: conservación de la naturaleza para el hombre. Acta Zool Mex 5:4–48Google Scholar
  33. Hammer Ø, Harper DAT, Ryan PD (2001) PAST-palaeontological statistics, ver. 1.89. Palaeontol Electron 4:1–9Google Scholar
  34. Hetherington AM, Woodward FI (2003) The role of stomata in sensing and driving environmental change. Nature 424:901–908CrossRefPubMedGoogle Scholar
  35. Hubisz MJ, Falush D, Stephens M, Pritchard JK (2009) Inferring weak population structure with the assistance of sample group information. Mol Ecol Res 9:1322–1332CrossRefGoogle Scholar
  36. IUCN (2010) The IUCN Red List of Threatened Species. October 2010 update. Cycad facts. https://cmsdata.iucn.org/downloads/cycad_factsheet_final.pdf. Accessed 28 Mar 2017
  37. IUCN (2018) The IUCN Red List of Threatened Species. Version 2016-3. http://www.iucnredlist.org. Accessed 9 Mar 2018
  38. James HE, Forster PI, Lamont RW, Shapcott A (2018) Conservation genetics and demographic analysis of the endangered cycad species Cycas megacarpa and the impacts of past habitat fragmentation.  https://doi.org/10.1071/BT17192 CrossRefGoogle Scholar
  39. Keppel G, Lee SW, Hodgskiss PD (2002) Evidence for long isolation among populations of a Pacific cycad: genetic diversity and differentiation in Cycas seemannii A. Br.(Cycadaceae). J Hered 93:133–139CrossRefPubMedGoogle Scholar
  40. Kopelman NM, Mayzel J, Jakobsson M, Rosenberg NA, Mayrose I (2015) Clumpak: a program for identifying clustering modes and packaging population structure inferences across K. Mol Ecol Res 15:1179–1191CrossRefGoogle Scholar
  41. Liu J, Zhou W, Gong X (2015) Species delimitation, genetic diversity and population historical dynamics of Cycas diannanensis (Cycadaceae) occurring sympatrically in the Red River region of China. Front Plant Sci 6Google Scholar
  42. Mace GM (2014) Whose conservation? Science 345:1558–1560CrossRefPubMedGoogle Scholar
  43. Manoukis NC (2007) FORMATOMATIC: a program for converting diploid allelic data between common formats for population genetic analysis. Mol Ecol Notes 7:592–593CrossRefPubMedPubMedCentralGoogle Scholar
  44. Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220PubMedGoogle Scholar
  45. Marler PN, Marler TE (2015) An assessment of Red List data for the Cycadales. Trop Conserv Sci 8:1114–1125CrossRefGoogle Scholar
  46. Moritz C (1994) Defining ‘evolutionarily significant units’ for conservation. Trends Ecol Evol 9:373–375CrossRefPubMedGoogle Scholar
  47. Nei M (1973) Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci USA 70:3321–3323CrossRefPubMedGoogle Scholar
  48. Palsbøll PJ, Berube M, Allendorf FW (2007) Identification of management units using population genetic data. Trends Ecol Evol 22:11–16CrossRefPubMedGoogle Scholar
  49. Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28:2537–2539CrossRefPubMedPubMedCentralGoogle Scholar
  50. Pérez-Farrera MA, Vovides AP (2004) Spatial distribution, population structure, and fecundity of Ceratozamia matudai Lundell (Zamiaceae) in El Triunfo Biosphere Reserve, Chiapas, Mexico. Bot Rev 70:299–311CrossRefGoogle Scholar
  51. Pérez-Farrera MA, Vovides AP, Avendaño S (2014) Morphology and leaflet anatomy of the Ceratozamia norstogii (Zamiaceae, Cycadales) species complex in Mexico with comments on relationships and speciation. Int J Plant Sci 175(1):110–121CrossRefGoogle Scholar
  52. Pérez-Farrera MA, Vovides AP, Ruiz-Castillejos C, Galicia S, Cibrián-Jaramillo A, López S (2016) Anatomy and morphology suggest a hybrid origin of Zamia katzeriana (Zamiaceae). Phytotaxa 270:161–181CrossRefGoogle Scholar
  53. Peters JL, Lavretsky P, DaCosta JM, Bielefeld RR, Feddersen JC, Sorenson MD (2016) Population genomic data delineate conservation units in mottled ducks (Anas fulvigula). Biol Conserv 203:272–281CrossRefGoogle Scholar
  54. Plummer M, Best N, Cowles K, Vines K (2006) CODA: convergence diagnosis and output analysis for MCMC. R News 6:7–11Google Scholar
  55. Pritchard JK, Wen X, Falush D (2010) Documentation for structure software: Version 2.3. University of Chicago, ChicagoGoogle Scholar
  56. Reed DH, Frankham R (2003) Correlation between fitness and genetic diversity. Conserv Biol 17:230–237CrossRefGoogle Scholar
  57. Ren J, Chen L, Sun D et al (2013) SNP-revealed genetic diversity in wild emmer wheat correlates with ecological factors. BMC Evol Biol 13:169CrossRefPubMedPubMedCentralGoogle Scholar
  58. Rzedowski J, Huerta L (1978) Vegetación de México. Limusa, Mexico CityGoogle Scholar
  59. Sabato S, De Luca P (1985) Evolutionary trends in Dion (Zamiaceae). Am J Bot 72:1353–1363CrossRefGoogle Scholar
  60. Salas-Morales SH, Chemnick J, Gregory TJ (2016) A new cycad species in the genus Dioon (Zamiaceae) from the Mixteca region of Oaxaca, Mexico. Cact Succ J 88:35–42CrossRefGoogle Scholar
  61. Stockwell CA, Heilveil JS, Purcell K (2013) Estimating divergence time for two evolutionarily significant units of a protected fish species. Conserv Genet 14:215–222CrossRefGoogle Scholar
  62. Suyama Y, Matsuki Y (2015) MIG-seq: an effective PCR-based method for genome-wide single-nucleotide polymorphism genotyping using the next-generation sequencing platform. Sci Rep.  https://doi.org/10.1038/srep16963 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Vovides AP, Galicia S (2016) G-fibers and Florin ring-like structures in Dioon (Zamiaceae). Bot Sci 94:263–268CrossRefGoogle Scholar
  64. Vovides AP, Pérez-Farrera MA, Iglesias C (2010) Cycad propagation by rural nurseries in Mexico as an alternative conservation strategy: 20 years on. Kew Bull 65:603–611CrossRefGoogle Scholar
  65. Vovides AP, Clugston JAR, Gutiérrez-Ortega JS, Pérez-Farrera MA, Sánchez-Tinoco MY, Galicia S (2018) Epidermal morphology and leaflet anatomy of Dioon (Zamiaceae) with comments on climate and environment. Flora 239:20–44CrossRefGoogle Scholar
  66. Whitelock LM (2002) The cycads. Timber Press, PortlandGoogle Scholar
  67. Xiao L, Gong X, Hao G, Ge X, Tian B, Zheng S (2005) Comparison of the genetic diversity in two species of cycads. Aust J Bot 53:219–223CrossRefGoogle Scholar
  68. Xiong M, Jin L (1999) Comparison of the power and accuracy of biallelic and microsatellite markers in population-based gene-mapping methods. Am J Hum Genet 64:629–640CrossRefPubMedPubMedCentralGoogle Scholar
  69. Yang SL, Meerow AW (1996) The Cycas pectinata (Cycadaceae) complex: genetic structure and gene flow. Int J Plant Sci 157:468–483CrossRefGoogle Scholar
  70. Zhan QQ, Wang JF, Gong X, Peng H (2011) Patterns of chloroplast DNA variation in Cycas debaoensis (Cycadaceae): conservation implications. Conserv Genet 12:959–970CrossRefGoogle Scholar
  71. Zheng Y, Liu J, Feng X, Gong X (2017) The distribution, diversity, and conservation status of Cycas in China. Ecol Evol 7:3212–3224CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • José Said Gutiérrez-Ortega
    • 1
  • Karen Jiménez-Cedillo
    • 2
  • Miguel Angel Pérez-Farrera
    • 3
  • Andrew P. Vovides
    • 4
  • José F. Martínez
    • 5
  • Francisco Molina-Freaner
    • 5
    • 6
  • Ryosuke Imai
    • 7
  • Yoshiaki Tsuda
    • 7
  • Yu Matsuki
    • 8
  • Yoshihisa Suyama
    • 8
  • Yasuyuki Watano
    • 1
  • Tadashi Kajita
    • 9
  1. 1.Department of Biology, Graduate School of ScienceChiba UniversityChibaJapan
  2. 2.Licenciatura en BiologíaUniversidad de SonoraHermosilloMexico
  3. 3.Laboratorio de Ecología Evolutiva, Herbario Eizi Matuda, Instituto de Ciencias BiológicasUniversidad de Ciencias y Artes de ChiapasTuxtla GutiérrezMexico
  4. 4.Departamento de Biología EvolutivaInstituto de Ecología, A.C.XalapaMexico
  5. 5.Departamento de Ecología de la Biodiversidad, Instituto de EcologíaUniversidad Nacional Autónoma de MéxicoHermosilloMexico
  6. 6.Instituto de Geología, Estación Regional del NoroesteUniversidad Nacional Autónoma de MéxicoHermosilloMexico
  7. 7.Sugadaira Montane Research CenterUniversity of TsukubaUedaJapan
  8. 8.Kawatabi Field Science Center, Graduate School of Agricultural ScienceTohoku UniversityOsakiJapan
  9. 9.Iriomote Station, Tropical Biosphere Research CenterUniversity of the RyukyusYaeyamaJapan

Personalised recommendations