Conservation Genetics

, Volume 19, Issue 3, pp 673–685 | Cite as

No distinct barrier effects of highways and a wide river on the genetic structure of the Alpine newt (Ichthyosaura alpestris) in densely settled landscapes

  • Hirzi Luqman
  • Roxane Muller
  • Andrea Vaupel
  • Sabine Brodbeck
  • Janine Bolliger
  • Felix GugerliEmail author
Research Article


Linear landscape elements such as roads, railways and rivers have been shown to act as barriers to dispersal and gene flow, hence impeding functional connectivity and increasing genetic differentiation between individuals or populations on opposite sides of the barrier. Such putative barriers act through a confluence of mechanisms, including crossing mortality, barrier avoidance and modifications to organisms’ effective dispersal patterns. Small, terrestrial animals such as amphibians are predicted to be vulnerable to the effects of such barriers given their limited locomotive performance and their dependence on spatially distinct breeding habitats. Here, we examined the effects of highways and a wide river on Ichthyosaura alpestris in three regions of northern Switzerland by measuring the genetic differentiation between local populations and describing the spatial genetic structure. Moreover, we estimated effective population sizes as an indicator for the susceptibility of populations to random genetic drift. Based on genetic differentiation, we found evidence to suggest that the highways and river acted as barriers to gene flow for the newt in the study regions, but results were inconsistent when ignoring breeding ponds with low samples sizes. Admixture-based genetic clustering suggested the delineation of the genotypes to rough regional clusters, with only weak structure inferred within these clusters. Thus, results suggest that at present, highways and rivers do not substantially affect the genetic structure of I. alpestris within northern Switzerland in a negative manner. Alternatively, the lack of a distinct genetic structure in regional newt populations may be explained by, e.g., large effective population sizes.


Amphibians Barrier effect Functional connectivity Gene flow Landscape genetics 



We thank Robin Winiger for assistance with lab work, Bettina Erne for assistance with field work, and Manuel Frei for teaching us newt-capture techniques. Benedikt Schmidt (KARCH) provided valuable input in various ways, while Maarten van Strien and Dorena Nagel inspired the R code applied. Comments of two anonymous reviewers are greatly acknowledged. We are indebted to the authorities and property owners in the cantons of Aargau, Thurgau and Zurich who gave us permission to sample on their grounds, as well as to the cantonal nature conservation and veterinary officers who provided sampling permits. This project was funded by the ETH Competence Centre for Environmental Sustainability (ETH-CCES, GeneMig project awarded to JB and FG).

Supplementary material

10592_2018_1046_MOESM1_ESM.docx (1.9 mb)
Supplementary material 1 (DOCX 1921 KB) (79 kb)
Supplementary material 2 (ZIP 80 KB)


  1. Balkenhol N, Waits LP (2009) Molecular road ecology: exploring the potential of genetics for investigating transportation impacts on wildlife. Mol Ecol 18:4151–4164. CrossRefPubMedGoogle Scholar
  2. Burkart S, Gugerli F, Senn J, Kuehn R, Bolliger J (2016) Evaluating the functionality of expert-assessed wildlife corridors with genetic data from roe deer. Basic Appl Ecol 17:52–60. CrossRefGoogle Scholar
  3. Chen C, Durand E, Forbes F, François O (2007) Bayesian clustering algorithms ascertaining spatial population structure: a new computer program and a comparison study. Mol Ecol Notes 7:747–756. CrossRefGoogle Scholar
  4. Cooke A (1986) Studies of the crested newt at Shillow Hill, 1984–1986. Herpetof News 6:4–5Google Scholar
  5. Corlatti L, Hackländer K, Frey-Roos F (2009) Ability of wildlife overpasses to provide connectivity and prevent genetic isolation. Conserv Biol 23:548–556. CrossRefPubMedGoogle Scholar
  6. Do C, Waples RS, Peel D, Macbeth GM, Tillett BJ, Ovenden JR (2014) NeEstimator v2: re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Mol Ecol Resour 14:209–214. CrossRefPubMedGoogle Scholar
  7. Dolmen D (1981) Local migration, rheotaxis and philopatry by Triturus vulgaris within a locality in central Norway. Br J Herpetol 6:151–158Google Scholar
  8. Durand E, Jay F, Gaggiotti OE, Francois O (2009) Spatial inference of admixture proportions and secondary contact zones. Mol Biol Evol 26:1963–1973. CrossRefPubMedGoogle Scholar
  9. Earl DA, vonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361. CrossRefGoogle Scholar
  10. Emaresi G, Pellet J, Dubey S, Hirzel AH, Fumagalli L (2011) Landscape genetics of the Alpine newt (Mesotriton alpestris) inferred from a strip-based approach. Conserv Genet 12:41–50. CrossRefGoogle Scholar
  11. Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567. CrossRefPubMedGoogle Scholar
  12. Fogelqvist J, Niittyvuopio A, Ågren J, Savolainen O, Lascoux M (2010) Cryptic population genetic structure: the number of inferred clusters depends on sample size. Mol Ecol Resour 10:314–323. CrossRefPubMedGoogle Scholar
  13. François O, Durand E (2010) Spatially explicit Bayesian clustering models in population genetics. Mol Ecol Resour 10:773–784. CrossRefPubMedGoogle Scholar
  14. François O, Blum MGB, Jakobsson M, Rosenberg NA (2008) Demographic history of European populations of Arabidopsis thaliana. PLoS Genet 4:e1000075. CrossRefPubMedPubMedCentralGoogle Scholar
  15. Frei M, Csencsics D, Brodbeck S, Schweizer E, Bühler C, Gugerli F, Bolliger J (2016) Combining landscape genetics, radio-tracking and long-term monitoring to derive management implications for Natterjack toads (Epidalea calamita) in agricultural landscapes. J Nat Conserv 32:22–34. CrossRefGoogle Scholar
  16. Gauffre B, Estoup A, Bretagnolle V, Cosson J-F (2008) Spatial genetic structure of a small rodent in a heterogeneous landscape. Mol Ecol 17:4619–4629. CrossRefPubMedGoogle Scholar
  17. Griffiths RA (1984) Seasonal behaviour and intrahabitat movements in an urban population of Smooth newts, Triturus vulgaris (Amphibia: Salamandridae). J Zool 203:241–251. CrossRefGoogle Scholar
  18. Guillot G, Leblois R, Coulon A, Frantz AC (2009) Statistical methods in spatial genetics. Mol Ecol 18:4734–4756. CrossRefPubMedGoogle Scholar
  19. Hadfield JD (2010) MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R package. J Stat Softw 33:1–22CrossRefGoogle Scholar
  20. Hardy OJ, Vekemans X (2002) SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes 2:618–620. CrossRefGoogle Scholar
  21. Hepenstrick D, Thiel D, Holderegger R, Gugerli F (2012) Genetic discontinuities in roe deer (Capreolus capreolus) coincide with fenced transportation infrastructure. Basic Appl Ecol 13:631–638. CrossRefGoogle Scholar
  22. Hoffman JR, Willoughby JR, Swanson BJ, Pangle KL, Zanatta DT (2017) Detection of barriers to dispersal is masked by long lifespans and large population sizes. Ecol Evol 7:9613–9623. CrossRefPubMedPubMedCentralGoogle Scholar
  23. Holderegger R, Di Giulio M (2010) The genetic effects of roads: A review of empirical evidence. Basic Appl Ecol 11:522–531. CrossRefGoogle Scholar
  24. Holderegger R, Wagner HH (2006) A brief guide to landscape genetics. Landsc Ecol 21:793–796. CrossRefGoogle Scholar
  25. Hubisz MJ, Falush D, Stephens M, Pritchard JK (2009) Inferring weak population structure with the assistance of sample group information. Mol Ecol Res 9(5):1322–1332CrossRefGoogle Scholar
  26. Jacob JP, Percsy C, de Wavrin H, Graitson E, Kinet T, Denoël M, Paquay M, Percsy N, Remacle A (2007) Amphibiens et Reptiles de Wallonie. Aves - Raînne et Centre de Recherche de la Nature, des Forêts et du Bois. Publication d’Aves—Raînne et du Centre de Recherche de la Nature, des Forêts et du Bois Ministère de la Région wallonne—Direction Générale des Ressources naturelles et de l’EnvironnementGoogle Scholar
  27. Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801–1806. CrossRefPubMedGoogle Scholar
  28. Jehle R, Sinsch U (2007) Wanderleistung und Orientierung bei Amphibien: eine Übersicht. Zeitschrift für Feldherpetologie 14:137–152Google Scholar
  29. Joly P, Miaud C (1989) Fidelity to the breeding site in the Alpine newt Triturus alpestris. Behav Process 19:47–56. CrossRefGoogle Scholar
  30. Joly P, Miaud C, Lehmann A, Grolet O (2001) Habitat matrix effects on pond occupancy in newts. Conserv Biol 15:239–248. CrossRefGoogle Scholar
  31. Kopecký O, Vojar J, Denoël M (2010) Movements of Alpine newts (Mesotriton alpestris) between small aquatic habitats (ruts) during the breeding season. Amphibia-Reptilia 31:109–116. CrossRefGoogle Scholar
  32. Landguth EL, Cushman SA, Schwartz MK, McKelvey KS, Murphy M, Luikart G (2010) Quantifying the lag time to detect barriers in landscape genetics. Mol Ecol 19:4179–4191. CrossRefPubMedGoogle Scholar
  33. Lesbarrères D, Fahrig L (2012) Measures to reduce population fragmentation by roads: what has worked and how do we know? Trends Ecol Evol 27:374–380. CrossRefPubMedGoogle Scholar
  34. Lesbarrères D, Lodé T, Merilä J (2004) What type of amphibian tunnel could reduce road kills? Oryx 38:220–223. CrossRefGoogle Scholar
  35. Manel S, Schwartz MK, Luikart G, Taberlet P (2003) Landscape genetics: Combining landscape ecology and population genetics. Trends Ecol Evol 18:189–197. CrossRefGoogle Scholar
  36. Meirmans PG (2012) The trouble with isolation by distance. Mol Ecol 21:2839–2846CrossRefPubMedGoogle Scholar
  37. Meyer A, Zumbach S, Schmidt B, Monney JC (2009) Auf Schlangenspuren und Krötenpfaden: Amphibien und Reptilien der Schweiz. Haupt, BernGoogle Scholar
  38. Miaud C, Guyetant R, Faber H (2000) Age, size, and growth of the Alpine newt, Triturus alpestris (Urodela : Salamandridae), at high altitude and a review of life-history trait variation throughout its range. Herpetologica 56:135–144Google Scholar
  39. Murphy MA, Evans JS, Cushman SA, Storfer A (2008) Representing genetic variation as continuous surfaces: an approach for identifying spatial dependency in landscape genetic studies. Ecography 31:685–697. CrossRefGoogle Scholar
  40. Nomura T (2008) Estimation of effective number of breeders from molecular coancestry of single cohort sample. Evol Appl 1:462–474. CrossRefPubMedPubMedCentralGoogle Scholar
  41. Patterson N, Price AL, Reich D (2006) Population structure and eigenanalysis. PLoS Genet 2:2074–2093. CrossRefGoogle Scholar
  42. Peakall R, Smouse PE (2012) GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research–an update. Bioinformatics 28:2537–2539. CrossRefPubMedPubMedCentralGoogle Scholar
  43. Peel D, Waples RS, Macbeth GM, Do C, Ovenden JR (2013) Accounting for missing data in the estimation of contemporary genetic effective population size (Ne). Mol Ecol Resour 13:243–253. CrossRefPubMedGoogle Scholar
  44. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedPubMedCentralGoogle Scholar
  45. Prunier JG, Kaufmann B, Léna JP, Fenet S, Pompanon F, Joly P (2014) A 40-year-old divided highway does not prevent gene flow in the Alpine newt Ichthyosaura alpestris. Conserv Genet 15:453–468. CrossRefGoogle Scholar
  46. Rosenberg NA (2004) DISTRUCT: a program for the graphical display of population structure. Mol Ecol Notes 4:137–138. CrossRefGoogle Scholar
  47. Rousset F (1997) Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145:1219–1228. PubMedPubMedCentralCrossRefGoogle Scholar
  48. Safner T, Miller MP, McRae BH, Fortin MJ, Manel S (2011) Comparison of Bayesian clustering and edge detection methods for inferring boundaries in landscape genetics. Int J Mol Sci 12:865–889. CrossRefPubMedPubMedCentralGoogle Scholar
  49. Slatkin M (1995) A measure of population subdivision based on microsatellite allele frequencies. Genetics 139:457–462PubMedPubMedCentralGoogle Scholar
  50. Storfer A, Murphy MA, Evans JS, Goldberg CS, Robinson S, Spear SF, Dezzani R, Delmelle E, Vierling L, Waits LP (2007) Putting the “landscape” in landscape genetics. Heredity 98:128–142. CrossRefPubMedGoogle Scholar
  51. Thiesmeier B, Schulte U (2010) Der Bergmolch—im Flachland wie im Hochgebirge zu Hause. Laurenti, BielefeldGoogle Scholar
  52. Van Buskirk J (2012) Permeability of the landscape matrix between amphibian breeding sites. Ecol Evol 2:3160–3167. CrossRefPubMedPubMedCentralGoogle Scholar
  53. Waples RS, Do C (2008) LDNE: a program for estimating effective population size from data on linkage disequilibrium. Mol Ecol Resour 8:753–756. CrossRefPubMedGoogle Scholar
  54. Waples RS, Do C (2010) Linkage disequilibrium estimates of contemporary N e using highly variable genetic markers: a largely untapped resource for applied conservation and evolution. Evol Appl 3:244–262. CrossRefPubMedGoogle Scholar
  55. Zhdanova OL, Pudovkin AI (2008) Nb_HetEx: a program to estimate the effective number of breeders. J Hered 99:694–695. CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.WSLSwiss Federal Research InstituteBirmensdorfSwitzerland
  2. 2.ETH ZürichZurichSwitzerland
  3. 3.Programm MGUUniversity of BaselBaselSwitzerland
  4. 4.Büro DreckerFreiraum- und UmweltplanungBottropGermany

Personalised recommendations