Advertisement

Conservation Genetics

, Volume 19, Issue 3, pp 599–610 | Cite as

Delimitation of evolutionary units in Cuvier’s dwarf caiman, Paleosuchus palpebrosus (Cuvier, 1807): insights from conservation of a broadly distributed species

  • F. L. Muniz
  • Z. Campos
  • S. M. Hernández Rangel
  • J. G. Martínez
  • B. C. Souza
  • B. De Thoisy
  • R. Botero-Arias
  • T. Hrbek
  • I. P. Farias
Research Article

Abstract

An important goal of evolutionary and conservation biology is the identification of units below the species level, such as Evolutionarily Significant Units (ESUs), providing objectively delimited units for species conservation and management. In this study we tested the hypothesis that Cuvier’s dwarf caiman (Paleosuchus palpebrosus)—a species broadly distributed across several biomes and watersheds of South America—is comprised of different ESUs. We analyzed mitochondrial cytochrome b sequences of 206 individuals and 532 unlinked ddRAD loci of 20 individuals chosen from amongst the mitochondrial haplogroups. Analysis of the cytochrome b sequences revealed four mitochondrial clusters, while STRUCTURE analysis of ddRAD loci detected three genomic clusters with different levels of mixture between them. Using the Adaptive Evolutionary Conservation (AEC) framework we identified three ESUs: “Amazon”, “Madeira-Bolivia” and “Pantanal”; one of them composed of two different Management Units (MUs), “Madeira” and “Bolivia”. In general, based on the comparisons with other crocodilian species, genetic diversity of each lineage was moderate however, the Madeira MU showed fivefold lower genetic diversity than other geographic groups. Considering the particularities of each Paleosuchus palpebrosus conservation unit, we recommend that the conservation status of each is evaluated separately. Tropical biodiversity is largely underestimated and in this context the broadly distributed species are the most likely candidates to harbor distinct evolutionary lineages. Thus, we suggest that conservation research should not neglect species that are generally considered of Least Concern by IUCN due to the taxon’s broad geographic distribution.

Keywords

Evolutionarily significant unit Management unit Genetic diversity DdRADseq Cytochrome b Gene flow 

Notes

Acknowledgements

This study would have been impossible without the people who helped with the field collections: Daniel Martins, Dênis Tilcara, Deyla Oliveira, José Augusto da Silva, Manoel Rodrigues, Pedro Almeida, Tânia Sanaiotti, Valéria Machado and William Vasconcelos; or without Guto Ruffeil who deposited samples in the CTGA/UFAM tissue collection. We are also thankful to Mitchell Eaton for additional information about Osteolaemus species. This project was approved by Embrapa ethics committee under the Permit no. 009/2016 and the caimans were captured under License no. 13048-1 granted by the Brazilian Institute of Environment and Renewable Natural Resources (IBAMA). In French Guiana, the species is not protected and sampling does not require license. This study was financed by the following Grants: CNPq/CT-Amazon Project no. 575603/2008-9 awarded to IPF, CNPq Project no. 482662/2013-1 to TH, and CNPq Project no. 470383/2007-0 and 479179/2014 to ZC. We are also grateful for the additional financial and logistical support from Embrapa Pantanal (Macroprogram 3), Instituto Nacional de Pesquisas da Amazônia (INPA), Fundect, O Boticário Foundation, Instituto Chico Mendes de Conservação da Biodiversidade (ICMBio) and Santo Antônio Energia. This work is part of FM’s thesis in the Genetics, Conservation and Evolutionary Biology program of INPA/UFAM. FM is supported by a Grant from FAPEAM, and IPF and TH by a Grant from CNPq.

Supplementary material

10592_2017_1035_MOESM1_ESM.doc (76 kb)
Supplementary material 1 (DOC 76 KB)

References

  1. Avise JC (1994) Molecular markers, natural history, and evolution. Chapman & Hall, New YorkCrossRefGoogle Scholar
  2. Beerli P (2006) Comparison of Bayesian and maximum-likelihood inference of population genetic parameters. Bioinformatics 22:341–345.  https://doi.org/10.1093/bioinformatics/bti803 CrossRefPubMedGoogle Scholar
  3. Brown DM, Brenneman RA, Koepfli KP, Pollinger JP, Milá B, Georgiadis NJ et al (2007) Extensive population genetic structure in the giraffe. BMC Biol 5:57.  https://doi.org/10.1186/1741-7007-5-57 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Campos Z, Magnusson WE (2016) Density and Biomass Estimates by Removal for an Amazonian Crocodilian, Paleosuchus palpebrosus. PLoS ONE.  https://doi.org/10.1371/journal.pone.0156406 Google Scholar
  5. Campos Z, Mourão G (2006) Conservation status of the dwarf caiman, Paleosuchus palpebrosus, in the region surrounding Pantanal. Crocodile Spec Group Newsl 25:9–10Google Scholar
  6. Campos Z, Coutinho M, Abercrombie C (1995) Size structure and sex ratio of dwarf caiman in the Serra Amolar, Pantanal, Brazil. Herpetol J 5:321–322Google Scholar
  7. Campos Z, Sanaiotti T, Magnusson W (2010) Maximum size of dwarf caiman, Paleosuchus palpebrosus (Cuvier, 1807), in the Amazon and habitats surrounding the Pantanal, Brazil. Amphibia-Reptilia 31:439–442.  https://doi.org/10.1163/156853810791769392 CrossRefGoogle Scholar
  8. Campos Z, Marioni B, Farias IP, Verdade LM, Bassetti L, Coutinho ME et al (2013) Avaliação do risco de extinçao do jacaré-paguá Paleosuchus palpebrosus (Cuvier, 1807) no Brasil. Biodiversidade Brasileira 3:40–47Google Scholar
  9. Campos Z, Sanaiotti T, Marques V, Magnusson WE (2015a) Geographic Variation in Clutch Size and Reproductive Season of the Dwarf Caiman, Paleosuchus palpebrosus, in Brazil. J Herpetol 49:95–98.  https://doi.org/10.1670/11-224 CrossRefGoogle Scholar
  10. Campos Z, Muniz FL, Farias IP, Hrbek T (2015b) Conservation status of the dwarf caiman Paleosuchus palpebrosus in the region of the Araguaia-Tocantins basin, Brazil. Crocodile Spec Group Newsl 34:4–8Google Scholar
  11. Cella-Ribeiro A, Torrente-Vilara G, Hungria DB, Oliveira M (2013) As corredeiras do Rio Madeira. In: Queiroz LJ, Torrente-Vilara G, Ohara WM, Pires T, Zuanon J, Doria CRC (eds) Peixes do Rio Madeira, 1st edn. Dialeto Latin American Documentary, São Paulo, pp 56–63Google Scholar
  12. Corander J, Marttinen P, Sirén J, Tang J (2008) Enhanced Bayesian modelling in BAPS software for learning genetic structures of populations. BMC Bioinformatics 9:539.  https://doi.org/10.1186/1471-2105-9-539 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Coyne KJ, Burkholder JM, Feldman RA, Hutchins DA, Cary SC (2004) Modified serial analysis of gene expression method for construction of gene expression profiles of microbial eukaryotic species. Appl Environ Microbiol 70:5298–5304.  https://doi.org/10.1128/AEM.70.9.5298 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Crandall KA, Bininda-Emonds ORP, Mace GM, Wayne RK (2000) Considering evolutionary processes in conservation biology. Trends Ecol Evol 15:290–295.  https://doi.org/10.1016/S0169-5347(00)01876-0 CrossRefPubMedGoogle Scholar
  15. Cunningham SW, Shirley MH, Hekkala ER (2016) Fine scale patterns of genetic partitioning in the rediscovered African crocodile, Crocodylus suchus (Saint-Hilaire 1807). PeerJ.  https://doi.org/10.7717/peerj.1901 PubMedPubMedCentralGoogle Scholar
  16. Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9:772.  https://doi.org/10.1038/nmeth.2109 CrossRefPubMedPubMedCentralGoogle Scholar
  17. de Queiroz K (2007) Species concepts and species delimitation. Syst Biol 56:879–886.  https://doi.org/10.1080/10635150701701083 CrossRefPubMedGoogle Scholar
  18. Earl DA, VonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361.  https://doi.org/10.1007/s12686-011-9548-7 CrossRefGoogle Scholar
  19. Eaton DAR (2014) PyRAD: assembly of de novo RADseq loci for phylogenetic analysis. Bioinformatics 30:1844–1849.  https://doi.org/10.1093/bioinformatics/btu121 CrossRefPubMedGoogle Scholar
  20. Eaton MJ, Martin A, Thorbjarnarson J, Amato G (2009) Species-level diversification of African dwarf crocodiles (Genus Osteolaemus): a geographic and phylogenetic perspective. Mol Phylogenet Evol 50:496–506.  https://doi.org/10.1016/j.ympev.2008.11.009 CrossRefPubMedGoogle Scholar
  21. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797.  https://doi.org/10.1093/nar/gkh340 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 14:2611–2620.  https://doi.org/10.1111/j.1365-294X.2005.02553.x CrossRefPubMedGoogle Scholar
  23. Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567CrossRefPubMedGoogle Scholar
  24. Farias IP, Silveira R, Thoisy B, Monjeló LA, Thorbjarnarson J, Hrbek T (2004) Genetic diversity and population structure of Amazonian crocodilians. Anim Conserv 7:265–272.  https://doi.org/10.1017/S136794300400143X CrossRefGoogle Scholar
  25. Fennessy J, Bidon T, Reuss F, Kumar V, Elkan P, Nilsson MA et al (2016) Multi-locus analyses reveal four giraffe species instead of one. Curr Biol 26:2543–2549.  https://doi.org/10.1016/j.cub.2016.07.036 CrossRefPubMedGoogle Scholar
  26. Franke FA, Schmidt F, Borgwardt C, Bernhard D, Bleidorn C, Engelmann WE, Schlegel M (2013) Genetic differentiation of the African dwarf crocodile Osteolaemus tetraspis Cope, 1861 (Crocodylia: Crocodylidae) and consequences for European zoos. Org Divers Evol 13:255–266.  https://doi.org/10.1007/s13127-012-0107-1 CrossRefGoogle Scholar
  27. Frankham R, Ballou JD, Briscoe DA (2004) A primer of conservation genetics. Cambridge University Press, New YorkCrossRefGoogle Scholar
  28. Fraser DJ, Bernatchez L (2001) Adaptive evolutionary conservation: towards a unified concept for defining conservation units. Mol Ecol 10:2741–2752.  https://doi.org/10.1046/j.1365-294X.2001.t01-1-01411.x CrossRefPubMedGoogle Scholar
  29. Fu YX (1997) Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147:915–925PubMedPubMedCentralGoogle Scholar
  30. Funk WC, McKay JK, Hohenlohe PA, Allendorf FW (2012) Harnessing genomics for delineating conservation units. Trends Ecol Evol 27:489–496.  https://doi.org/10.1016/j.tree.2012.05.012 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Godshalk R (2006) Phylogeography and conservation genetics of the yacare caiman (Caiman yacare) of South America. PhD thesis, University of Florida at GainesvilleGoogle Scholar
  32. Gravena W, Farias IP, Da Silva MNF, Da Silva VMF, Hrbek T (2014) Looking to the past and the future: Were the Madeira River rapids a geographical barrier to the boto (Cetacea: Iniidae)? Conserv Genet 15:619–629.  https://doi.org/10.1007/s10592-014-0565-4 Google Scholar
  33. Gravena W, da Silva VMF, da Silva MNF, Farias IP, Hrbek T (2015) Living between rapids: genetic structure and hybridization in botos (Cetacea: Iniidae: Inia spp.) of the Madeira River, Brazil. Biol J Linn Soc 114:764–777.  https://doi.org/10.1111/bij.12463 CrossRefGoogle Scholar
  34. Green MR, Sambrook J (2012) Molecular cloning: a laboratory manual: three-volume set, 4th edn. Cold Spring Harbor Laboratory Press, New YorkGoogle Scholar
  35. Guia APO, Saitoh T (2007) The gap between the concept and definitions in the evolutionarily significant unit: the need to integrate neutral genetic variation and adaptive variation. Ecol Res 22:604–612.  https://doi.org/10.1007/s11284-006-0059-z CrossRefGoogle Scholar
  36. Hekkala ER, Amato G, DeSalle R, Blum MJ (2010) Molecular assessment of population differentiation and individual assignment potential of Nile crocodile (Crocodylus niloticus) populations. Conserv Genet 11:1435–1443.  https://doi.org/10.1007/s10592-009-9970-5 CrossRefGoogle Scholar
  37. Hekkala ER, Shirley MH, Amato G, Austin JD, Charter S, Thorbjarnarson J et al (2011) An ancient icon reveals new mysteries: mummy DNA resurrects a cryptic species within the Nile crocodile. Mol Ecol 20:4199–4215.  https://doi.org/10.1111/j.1365-294X.2011.05245.x CrossRefPubMedGoogle Scholar
  38. Hrbek T, Vasconcelos WR, Rebêlo GH, Farias IP (2008) Phylogenetic relationships of south american alligatorids and the caiman of Madeira River. J Exp Zool A 309:588–599.  https://doi.org/10.1002/jez.430 CrossRefGoogle Scholar
  39. Hrbek T, Silva VMF, Dutra N, Gravena W, Martin AR, Farias IP (2014) A new species of river dolphin from Brazil or: how little do we know our biodiversity. PLoS ONE 9:e0083623.  https://doi.org/10.1371/journal.pone.0083623 CrossRefGoogle Scholar
  40. Hubert N, Renno JF (2006) Historical biogeography of South American freshwater fishes. J Biogeogr 33:1414–1436.  https://doi.org/10.1111/j.1365-2699.2006.01518.x CrossRefGoogle Scholar
  41. Hubert N, Duponchelle F, Nuñes J, Garcia-Davila C, Paugy D, Renno JF (2007) Phylogeography of the piranha genera Serrasalmus and Pygocentrus: implications for the diversification of the Neotropical ichthyofauna. Mol Ecol 16:2115–2136.  https://doi.org/10.1111/j.1365-294X.2007.03267.x CrossRefPubMedGoogle Scholar
  42. IUCN (2016) The IUCN red list of threatened species. Version 2016.3. http://www.iucnredlist.org. Accessed 20 Dec 2016
  43. Jackson JA, Steel DJ, Beerli P, Congdon BC, Olavarría C, Leslie MS et al (2014) Global diversity and oceanic divergence of humpback whales (Megaptera novaeangliae). Proc R Soc B 281:20133222.  https://doi.org/10.1098/rspb.2013.3222 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801–1806.  https://doi.org/10.1093/bioinformatics/btm233 CrossRefPubMedGoogle Scholar
  45. Kenny EM, Cormican P, Gilks WP, Gates AS, O’Dushlaine CT et al (2011) Multiplex target enrichment using DNA indexing for ultra-high throughput SNP detection. DNA Res 18:31–38.  https://doi.org/10.1093/dnares/dsq029 CrossRefPubMedGoogle Scholar
  46. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, 1000 Genome Project Data Processing Subgroup (2009) The Sequence alignment/map (SAM) format and SAMtools. Bioinformatics 25:2078–2079.  https://doi.org/10.1093/bioinformatics/btp352 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Magnusson WE (1992) Paleosuchus palpebrosus. Cat Am Amphib Rept 554:1–554.2Google Scholar
  48. Magnusson WE, Campos Z (2010) Cuvier’s smooth-fronted caiman Paleosuchus palpebrosus. In: Manolis SC, Stevenson C (eds) Crocodiles: status survey and conservation action plan, 3rd edn. Crocodile Specialist Group, Darwin, pp 40–42Google Scholar
  49. Milián-García Y, Castellanos-Labarcena J, Russello MA, Amato G (2018) Mitogenomic investigation reveals a cryptic lineage of Crocodylus in Cuba. Bull Mar Sci.  https://doi.org/10.5343/bms.2016.1134 Google Scholar
  50. Moritz C (1994) Defining “evolutionarily significant units” for conservation. Trends Ecol Evol 9:373–375.  https://doi.org/10.1016/0169-5347(94)90057-4 CrossRefPubMedGoogle Scholar
  51. Moritz C, Lavery S, Slade R (1995) Using allele frequency and phylogeny to define units for conservation and management. In: Nielsen JL, Powers GA (eds) Evolution and the aquatic ecosystem: defining unique units in population conservation, symposium. American Fisheries Society, Maryland, pp 249–262Google Scholar
  52. Nater A, Mattle-Greminger MP, Nurcahyo A, Nowak MG, Manuel M de, Desai T et al (2017) Morphometric, behavioral, and genomic evidence for a new Orangutan species. Curr Biol 27:3487–3498.  https://doi.org/10.1016/j.cub.2017.09.047 CrossRefPubMedGoogle Scholar
  53. Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New YorkGoogle Scholar
  54. Padial JM, Miralles A, De la Riva I, Vences M (2010) The integrative future of taxonomy. Front Zool 7:16.  https://doi.org/10.1186/1742-9994-7-16 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Peterson BK, Weber JN, Kay EH, Fisher HS, Hoekstra HE (2012) Double digest RADseq: an inexpensive method for de novo SNP discovery and genotyping in model and non-model species. PLoS ONE 7:e37135.  https://doi.org/10.1371/journal.pone.0037135 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Pickles RSA, Groombridge JJ, Zambrana VDR, Van Damme P, Gottelli D, Kundu S (2011) Evolutionary history and identification of conservation units in the giant otter, Pteronura brasiliensis. Mol Phylogenet Evol 61:616–627.  https://doi.org/10.1016/j.ympev.2011.08.017 CrossRefPubMedGoogle Scholar
  57. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959.  https://doi.org/10.1111/j.1471-8286.2007.01758.x PubMedPubMedCentralGoogle Scholar
  58. Rambaut A (2014) Figtree 1.4. 2 software. http://tree.bio.ed.ac.uk/software/figtree
  59. Roe KJ, Lydeard C (1998) Species delineation and the identification of evolutionarily significant units: lessons from the freshwater mussel genus Potamilus (Bivalvia: Unionidae). J Shellfish Res 17:1359–1363Google Scholar
  60. Rognes T, Flouri T, Nichols B, Quince C, Mahé F (2016) VSEARCH: a versatile open source tool for metagenomics. PeerJ 4:e2584.  https://doi.org/10.7717/peerj.2584 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Rohland N, Reich D, Mallick S, Meyer M, Green RE, Georgiadis NJ et al (2010) Genomic DNA Sequences from mastodon and woolly mammoth reveal deep speciation of forest and savanna elephants. PLoS Biol 8:e1000564.  https://doi.org/10.1371/journal.pbio.1000564 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Hohna S et al (2012) MrBayes 3.2: efficient bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–554.  https://doi.org/10.1093/sysbio/sys029 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Rosenberg NA (2004) DISTRUCT: a program for the graphical display of population structure. Mol Ecol Notes 4:137–138.  https://doi.org/10.1046/j.1471-8286.2003.00566.x CrossRefGoogle Scholar
  64. Ryder OA (1986) Species conservation and systematics: the dilemma of subspecies. Trends Ecol Evol 1:9–10.  https://doi.org/10.1016/0169-5347(86)90059-5 CrossRefGoogle Scholar
  65. Salzburger W, Ewing GB, Von Haeseler A (2011) The performance of phylogenetic algorithms in estimating haplotype genealogies with migration. Mol Ecol 20:1952–1963.  https://doi.org/10.1111/j.1365-294X.2011.05066.x CrossRefPubMedGoogle Scholar
  66. Scheffers BR, Joppa LN, Pimm SL, Laurance WF (2012) What we know and don’t know about Earth’s missing biodiversity. Trends Ecol Evol 27:501–510.  https://doi.org/10.1016/j.tree.2012.05.008 CrossRefPubMedGoogle Scholar
  67. Shirley MH, Vliet KA, Carr AN, Austin JD (2014a) Rigorous approaches to species delimitation have significant implications for African crocodilian systematics and conservation. Proc R Soc B 281:20132483.  https://doi.org/10.1098/rspb.2013.2483 CrossRefPubMedPubMedCentralGoogle Scholar
  68. Shirley MH, Villanova VL, Vliet KA, Austin JD (2014b) Genetic barcoding facilitates captive and wild management of three cryptic African crocodile species complexes. Anim Conserv 18:322–330.  https://doi.org/10.1111/acv.12176 CrossRefGoogle Scholar
  69. Streicher JW, Schulte IIJA., Wiens JJ (2016) How should genes and taxa be sampled for phylogenomic analyses with missing data? An empirical study in iguanian lizards. Syst Biol 65:128–145.  https://doi.org/10.1093/sysbio/syv058 CrossRefPubMedGoogle Scholar
  70. Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595PubMedPubMedCentralGoogle Scholar
  71. Vasconcelos WR, Hrbek T, Da Silveira R, De Thoisy B, Marioni B, Farias IP (2006) Population genetic analysis of Caiman crocodilus (Linnaeus, 1758) from South America. Genet Mol Biol 29:220–230.  https://doi.org/10.1590/S1415-47572006000200006 CrossRefGoogle Scholar
  72. Vasconcelos WR, Hrbek T, Da Silveira R, De Thoisy B, Ruffeil LAAS., Farias IP (2008) Phylogeographic and Conservation Genetic Analysis of the Black Caiman (Melanosuchus niger). J Exp Zool A 309A:600–613.  https://doi.org/10.1002/jez.452 CrossRefGoogle Scholar
  73. Venegas-Anaya M, Crawford AJ, Galván AHE, Sanjur OI, Densmore LD III, Bermingham E (2008) Mitochondrial DNA phylogeography of Caiman crocodilus in Mesoamerica and South America. J Exp Zool 309A:614–627.  https://doi.org/10.1002/jez.502 CrossRefGoogle Scholar
  74. Vogler AP, Desalle ROB (1994) Diagnosing units of conservation management. Conserv Biol 8:354–363.  https://doi.org/10.1046/j.1523-1739.1994.08020354.x CrossRefGoogle Scholar
  75. Waples RS (1991) Pacific salmon, Oncorynchus spp. & the definition of “species” under the endangered species act. Mar Fish Rev 53:11–22Google Scholar
  76. Waples RS (1995) Evolutionarily significant units and the conservation of biological diversity under the endangered species act. In: Nielsen JL, Powers GA (eds) Evolution and the aquatic ecosystem: defining unique units in population conservation, vol 17. American Fisheries Society, Maryland, pp 8–27Google Scholar
  77. Zwickl DJ (2006) Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion. Dissertation, The University of Texas, AustinGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  1. 1.Laboratory of Animal Genetics and Evolution (LEGAL), Department of BiologyFederal University of Amazonas (UFAM)ManausBrazil
  2. 2.Graduate Program in Genetics, Conservation and Evolutionary BiologyNational Institute for Amazonian Research (INPA)ManausBrazil
  3. 3.Wildlife Laboratory, Brazilian Agricultural Research Corporation (EMBRAPA) PantanalCorumbáBrazil
  4. 4.Grupo de Investigación Biociencias, Facultad de Ciencias de la SaludInstitución Universitaria Colegio Mayor de AntioquiaMedellínColombia
  5. 5.Grupo de Pesquisa em Genética Molecular e Citogenética, Programa de Pós-Graduação em Biotecnologia e Recursos Naturais (MBT), Escola Superior de Ciências da SaúdeUniversidade do Estado do AmazonasManausBrazil
  6. 6.Chico Mendes Institute for Biodiversity Conservation (ICMBio)Boa VistaBrazil
  7. 7.Institut Pasteur de la GuyaneCayenneFrench Guiana
  8. 8.Association KwataCayenneFrench Guiana
  9. 9.Caiman Research in Conservation and Management ProgramInstituto Mamirauá para o Desenvolvimento SustentávelTeféBrazil
  10. 10.Department of Wildlife Ecology and ConservationUniversity of FloridaGainesvilleUSA

Personalised recommendations