Advertisement

Conservation Genetics

, Volume 19, Issue 3, pp 527–543 | Cite as

Genetic structure and genetic diversity of the endangered grassland plant Crepis mollis (Jacq.) Asch. as a basis for conservation management in Germany

  • Virginia K. Duwe
  • Ludo A. H. Muller
  • Katja Reichel
  • Elke Zippel
  • Thomas Borsch
  • Sascha A. Ismail
Research Article
  • 294 Downloads

Abstract

Plant diversity is decreasing mainly through anthropogenic factors like habitat fragmentation, which lead to spatial separation of remaining populations and thereby affect genetic diversity and structure within species. Twenty populations of the threatened grassland species Crepis mollis were studied across Germany (578 individual plants) based on microsatellite genotyping. Genetic diversity was significantly higher in populations from the Alpine region than from the Central Uplands. Furthermore, genetic diversity was significantly positively correlated with population size. Despite smaller populations in the Uplands there were no signs of inbreeding. Genetic differentiation between populations was moderate (F ST = 0.09) and no isolation by distance was found. In contrast, large-scale spatial genetic structure showed a significant decrease of individual pairwise relatedness, which was higher than in random pairs up to 50 km. Bayesian analyses detected three genetic clusters consistent with two regions in the Uplands and an admixture group in the Alpine region. Despite the obvious spatial isolation of the currently known populations, the absence of significant isolation by distance combined together with moderate population differentiation indicates that drift rather than inter-population gene flow drives differentiation. The absence of inbreeding suggests that pollination is still effective, while seed dispersal by wind is likely to be impaired by discontinuous habitats. Our results underline the need for maintaining or improving habitat quality as the most important short term measure for C. mollis. For maintaining long-term viability, establishing stepping stone habitats or, where this is not possible, assisted gene flow needs to be considered.

Keywords

Microsatellites Genetic diversity Crepis mollis Inbreeding Gene flow Spatial genetic structure 

Abbreviations

FSGS

Fine-scale spatial genetic structure

LSGS

Large-scale spatial genetic structure

Notes

Acknowledgements

We thank L. Botschen and R. Wanke for technical assistance with the lab work and especially R. Wanke for support in the field. We are thankful to E. Sossai, R. Hand, T. Gregor, C. Niederbichler, F. Richter, H. Korsch, E. von Raab-Straube, A. Schulte, R. Götte, K. Rieche, W. Westhus, D. Franke, and U. Hermann from the Carl-Orff-Stiftung who gave information about records or helped finding the study species. Special thanks are due to E. Welk who has generously provided the distribution map of C. mollis and to K. Govers, G. Dröge and C. Stiegler for their general support. We thank the authorities at state and regional level who granted permits for collection in protected areas. This study was funded by the German Federal Agency for Nature Conservation (BfN) under grant number FKZ 3512-86-0400 in the context of the project “Integration von Ex-situ und In-situ- Maßnahmen zur Erhaltung gefährdeter Blütenpflanzen in Deutschland-ein Modellvorhaben zur Umsetzung der Global Strategy for Plant Conservation (GSPC)”.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Supplementary material

10592_2017_1025_MOESM1_ESM.pdf (781 kb)
Supplementary material 1 (PDF 780 KB)

References

  1. Aguilar R, Ashworth L, Galetto L, Aizen MA (2006) Plant reproductive susceptibility to habitat fragmentation: review and synthesis through a meta-analysis. Ecol Lett 9:968–980.  https://doi.org/10.1111/j.1461-0248.2006.00927.x PubMedCrossRefGoogle Scholar
  2. Andersson S, Shaw RG (1994) Phenotypic plasticity in Crepis tectorum (Asteraceae): genetic correlations across light regimens. Heredity 72:113–125.  https://doi.org/10.1038/hdy.1994.17 CrossRefGoogle Scholar
  3. Arnaud-Haond S, Teixeira S, Massa SI, Billot C, Saenger P, Coupland G, Duarte CM, Serrao EA (2006) Genetic structure at range edge: low diversity and high inbreeding in Southeast Asian mangrove (Avicennia marina) populations. Mol Ecol 15:3515–3525.  https://doi.org/10.1111/j.1365-294X.2006.02997.x PubMedCrossRefGoogle Scholar
  4. Babcock EB (1947a) The Genus Crepis. In: Part I. The taxonomy, phylogeny, distribution and evolution of Crepis. University of California Publications, Berkely and Los AngelesGoogle Scholar
  5. Babcock EB (1947b) The genus crepis. Part II. systematic treatment. University of California Publications, Berkely and Los AngelesGoogle Scholar
  6. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B 57:289–300Google Scholar
  7. Bettinger A, Buttler KP, Caspari S, Klotz J, May R, Metzing D (2013) Verbreitungsatlas der Farn-und Blütenpflanzen Deutschlands. Bundesamt für Naturschutz, BonnGoogle Scholar
  8. Bremer K, Anderberg AA (1994) Asteraceae: cladistics and classification. Timber Press, PortlandGoogle Scholar
  9. Bundesamt für Naturschutz (2011) FloraWeb: Daten und Informationen zu Wildpflanzen und zur Vegetation Deutschlands. http://www.floraweb.de. Accessed 12 Apr 2017
  10. Charlesworth D, Pannell J (2001) Mating systems and population genetic structure in the light of coalescent theory. Spec Publ-British Ecol Soc 14:73–96Google Scholar
  11. Chen C, Durand E, Forbes F, François O (2007) Bayesian clustering algorithms ascertaining spatial population structure: a new computer program and a comparison study. Mol Ecol Notes 7:747–756.  https://doi.org/10.1111/j.1471-8286.2007.01769.x CrossRefGoogle Scholar
  12. Cheptou P-O, Berger A, Blanchard A, Collin C, Escarre J (2000) The effect of drought stress on inbreeding depression in four populations of the Mediterranean outcrossing plant Crepis sancta (Asteraceae). Heredity 85:294–302.  https://doi.org/10.1046/j.1365-2540.2000.00759.x PubMedCrossRefGoogle Scholar
  13. Cheptou P-O, Carrue O, Rouifed S, Cantarel A (2008) Rapid evolution of seed dispersal in an urban environment in the weed Crepis sancta. Proc Natl Acad Sci 105:3796–3799.  https://doi.org/10.1073/pnas.0708446105 PubMedPubMedCentralCrossRefGoogle Scholar
  14. Corlett RT (2016) Plant diversity in a changing world: status, trends, and conservation needs. Plant Divers 38:10–16.  https://doi.org/10.1016/j.pld.2016.01.001 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2014PubMedPubMedCentralGoogle Scholar
  16. Crawley M, Johnston A, Silvertown J, Dodd M, Mazancourt CD, Heard M, Henman D, Edwards G (2005) Determinants of species richness in the park grass experiment. Am Nat 165:179–192PubMedCrossRefGoogle Scholar
  17. Di Rienzo A, Peterson AC, Garza JC, Valdes AM, Slatkin M, Freimer NB (1994) Mutational processes of simple-sequence repeat loci in human populations. Proc Natl Acad Sci USA 91:3166–3170.  https://doi.org/10.1073/pnas.91.8.3166 PubMedPubMedCentralCrossRefGoogle Scholar
  18. Diekmann M, Dupré C, Müller J, Wittig B (2016) Handlungsleitfaden zur wiedereinbürgerung von pflanzenarten als naturschutzmaßnahme. Deutsche Bundesstiftung Umwelt, OsnabruckGoogle Scholar
  19. DiLeo MF, Rico Y, Boehmer HJ, Wagner HH (2017) An ecological connectivity network maintains genetic diversity of a flagship wildflower, Pulsatilla vulgaris. Biol Conserv 212:12–21.  https://doi.org/10.1016/j.biocon.2017.05.026 CrossRefGoogle Scholar
  20. Dröge G, Barker K, Astrin JJ, Bartels P, Butler C, Cantrill D, Coddington J, Forest F, Gemeinholzer B, Hobern D, Mackenzie-Dodds J, Tuama Ó, Petersen É, Sanjur G, Schindel O, Seberg D O (2014) The global genome biodiversity network (GGBN) data portal. Nucleic Acids Res 42:D607–D612.  https://doi.org/10.1093/nar/gkt928 CrossRefGoogle Scholar
  21. Duwe VK, Muller LAH, Borsch T, SA (2016) Development of Microsatellite Markers for Crepis mollis (Asteraceae). Appl Plant Sci 4:1600022.  https://doi.org/10.3732/apps.1600022 CrossRefGoogle Scholar
  22. Duwe VK, Muller LAH, Borsch T, Ismail SA (2017) Pervasive genetic differentiation among Central European populations of the threatened Arnica montana L. and genetic erosion at lower elevations. Perspect Plant Ecology.  https://doi.org/10.1016/j.ppees.2017.02.003 CrossRefGoogle Scholar
  23. Earl DA, vonHoldt BM (2012) Structure harvester: a website and program for visualizing structure output and implementing the Evanno method. Conserv Genet Resour 4:359–361.  https://doi.org/10.1007/s12686-011-9548-7 CrossRefGoogle Scholar
  24. Enke N, Gemeinholzer B (2008) Babcock revisited: new insights into generic delimitation and character evolution in Crepis L. (Compositae: Cichorieae) from ITS and matK sequence data. Taxon 57:756–768Google Scholar
  25. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 14:2611–2620.  https://doi.org/10.1111/j.1365-294X.2005.02553.x PubMedCrossRefGoogle Scholar
  26. Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491PubMedPubMedCentralGoogle Scholar
  27. Fischer M, Matthies D (1997) Mating structure and inbreeding and outbreeding depression in the rare plant Gentianella germanica (Gentianaceae). Am J Bot 84:1685–1685PubMedCrossRefGoogle Scholar
  28. Fischer M, Van Kleunen M, Schmid B (2000) Genetic allee effects on performance, plasticity and developmental stability in a clonal plant. Ecol Lett 3:530–539.  https://doi.org/10.1111/j.1461-0248.2000.00188.x CrossRefGoogle Scholar
  29. Foster BL, Gross KL (1998) Species richness in a successional grassland: effects of nitrogen enrichment and plant litter. Ecology 79:2593–2602.  https://doi.org/10.1890/0012-9658(1998)079[2593:SRIASG]2.0.CO;2 CrossRefGoogle Scholar
  30. Frankham R (2005) Genetics and extinction. Biol Conserv 126:131–140CrossRefGoogle Scholar
  31. Frankham R, Ballou JD, Eldridge MDB, Lacy RC, Ralls K, Dudash MR, Fenster CB (2011) Predicting the probability of outbreeding depression. Conserv Biol 25:465–475.  https://doi.org/10.1111/j.1523-1739.2011.01662.x PubMedCrossRefGoogle Scholar
  32. Gaggiotti OE, Lange O, Rassmann K, Gliddon C (1999) A comparison of two indirect methods for estimating average levels of gene flow using microsatellite data. Mol Ecol 8:1513–1520.  https://doi.org/10.1046/j.1365-294x.1999.00730.x PubMedCrossRefGoogle Scholar
  33. Garner A, Rachlow JL, Waits LP (2005) Genetic diversity and population divergence in fragmented habitats: conservation of Idaho ground squirrels. Conserv Genet 6:759–774.  https://doi.org/10.1007/s10592-005-9035-3 CrossRefGoogle Scholar
  34. Goudet J (1995) FSTAT (version 1.2): a computer program to calculate F-statistics. J Hered 86: 485–486.  https://doi.org/10.1093/oxfordjournals.jhered.a111627 CrossRefGoogle Scholar
  35. Gough L, Osenberg CW, Gross KL, Collins SL (2000) Fertilization effects on species density and primary productivity in herbaceous plant communities. Oikos 89:428–439.  https://doi.org/10.1034/j.1600-0706.2000.890302.x CrossRefGoogle Scholar
  36. Hampe A, Petit RJ (2005) Conserving biodiversity under climate change: the rear edge matters. Ecol Lett 8:461–467PubMedCrossRefGoogle Scholar
  37. Hamrick JL, Godt MJW (1996) Effects of life history traits on genetic diversity in plant species. Philos Trans R Soc London Ser B 351:1291–1298.  https://doi.org/10.1098/rstb.1996.0112 CrossRefGoogle Scholar
  38. Hardy OJ, Vekemans X (2002) SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes 2:618–620.  https://doi.org/10.1046/j.1471-8286.2002.00305.x CrossRefGoogle Scholar
  39. Hautekèete N-C, Frachon L, Luczak C, Toussaint B, van Landuyt W, van Rossum F, Piquot Y (2015) Habitat type shapes long-term plant biodiversity budgets in two densely populated regions in north-western Europe. Divers Distrib 21:631–642.  https://doi.org/10.1111/ddi.12287 CrossRefGoogle Scholar
  40. Hegi G (1987) DCCXCIX. Crepis L. Pippau. In: Wagenitz G (ed) Illustrierte Flora von Mittel-Europa VI (4,4), 2nd edn. Verlag Paul Parey, Berlin, pp 1134–1180Google Scholar
  41. Hodgson JG, Grime JP, Wilson PJ, Thompson K, Band SR (2005) The impacts of agricultural change (1963–2003) on the grassland flora of Central England: processes and prospects. Basic Appl Ecol 6:107–118.  https://doi.org/10.1016/j.baae.2005.01.009 CrossRefGoogle Scholar
  42. Holderegger R, Segelbacher G (2016) Naturschutzgenetik: Ein Handbuch für die Praxis. Haupt Verlag, BernGoogle Scholar
  43. Honnay O, Jacquemyn H (2007) Susceptibility of common and rare plant species to the genetic consequences of habitat fragmentation. Conserv Biol 21:823–831.  https://doi.org/10.1111/j.1523-1739.2006.00646.x PubMedCrossRefGoogle Scholar
  44. Huck S, Büdel B, Schmitt T (2012) Ice-age isolation, postglacial hybridization and recent population bottlenecks shape the genetic structure of Meum athamanticum in Central Europe. Flora 207:399–407.  https://doi.org/10.1016/j.flora.2012.03.005 CrossRefGoogle Scholar
  45. Hutchison DW, Templeton AR (1999) Correlation of pairwise genetic and geographic distance measures: inferring the relative Influences of gene flow and drift on the distribution of genetic variability. Evol Int J org Evol 53:1898–1914.  https://doi.org/10.2307/2640449 CrossRefGoogle Scholar
  46. Ismail SA, Duwe VK, Zippel E, Borsch T (2017) Assessment of current genetic structure from local to geographic scale indicates brake down of historically extensive gene flow in the dry grassland species Scabiosa canescens Waldst. & Kit. (Dipsacaceae). Divers Distrib 1–11Google Scholar
  47. Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23: 1801–1806.  https://doi.org/10.1093/bioinformatics/btm233 PubMedCrossRefGoogle Scholar
  48. Johansson M, Primmer CR, Merilae J (2007) Does habitat fragmentation reduce fitness and adaptability? A case study of the common frog (Rana temporaria). Mol Ecol 16:2693–2700.  https://doi.org/10.1111/j.1365-294X.2007.03357.x PubMedCrossRefGoogle Scholar
  49. Jordano P (2017) What is long-distance dispersal? And a taxonomy of dispersal events. J Ecol 105:75–84.  https://doi.org/10.1111/1365-2745.12690 CrossRefGoogle Scholar
  50. Kalinowski ST (2005) HP-RARE 1.0: a computer program for performing rarefaction on measures of allelic richness. Mol Ecol Notes 5:187–189.  https://doi.org/10.1111/j.1471-8286.2004.00845.x CrossRefGoogle Scholar
  51. Kalisz S, Vogler DW (2003) Benefits of autonomous selfing under unpredictable pollinator environments. Ecology 84:2928–2942.  https://doi.org/10.1890/02-0519 CrossRefGoogle Scholar
  52. Kisiel W, Zielińska K, Joshi SP (2000) Sesquiterpenoids and phenolics from Crepis mollis. Phytochemistry 54:763–766.  https://doi.org/10.1016/S0031-9422(00)00167-9 CrossRefGoogle Scholar
  53. Klimek S, Richter gen. Kemmermann A, Hofmann M, Isselstein J (2007) Plant species richness and composition in managed grasslands: the relative importance of field management and environmental factors. Biol Conserv 134:559–570.  https://doi.org/10.1016/j.biocon.2006.09.007 CrossRefGoogle Scholar
  54. Korneck D, Schnittler M, Vollmer I (1996) Rote Liste der Farn- und Blütenpflanzen (Peridophyta et Spermatophyta) Deutschlands. In: Ludwig G, Schnittler M (eds) Rote Liste gefährdeter Pflanzen Deutschlands, Schriftenreihe für Vegetationskunde, 28. Bundesamt für Naturschutz, Bonn, pp 21–187Google Scholar
  55. Korneck D, Schnittler M, Klingenstein F, Ludwig G, Takla M, Bohn U, May R (1998) Warum verarmt unsere Flora? Auswertung der Roten Liste der Farn-und Blütenpflanzen Deutschlands. In: BfN (ed) Ursachen des Artenrückganges von Wildpflanzen und Möglichkeiten zur Erhaltung der Artenvielfalt, Schriftenreihe für Vegetationskunde, 29, Bundesamt für Naturschutz, Bonn- Bad Godesberg, pp 299–444Google Scholar
  56. Kuemmerle T, Levers C, Erb K, Estel S, Jepsen MR, Müller D, Plutzar C, Stürck J, Verkerk PJ, Verburg PH (2016) Hotspots of land use change in Europe. Environ Res Lett 11:064020CrossRefGoogle Scholar
  57. Lammi A, Siikamäki P, Mustajärvi K (1999) Genetic diversity, population size, and fitness in central and peripheral populations of a rare plant Lychnis viscaria. Conserv Biol 13:1069–1078.  https://doi.org/10.1046/j.1523-1739.1999.98278.x CrossRefGoogle Scholar
  58. Legendre P, Legendre LFJ (1998) Numerical ecology, 2nd edn. Elsevier, AmsterdamGoogle Scholar
  59. Lesica P, Allendorf FW (1995) When are peripheral populations valuable for conservation? Conserv Biol 9:753–760.  https://doi.org/10.1046/j.1523-1739.1995.09040753.x CrossRefGoogle Scholar
  60. Lloyd DG (1992) Self- and cross-fertilization in plants. II. The selection of self- fertilization. Int J Plant Sci 153:370–380CrossRefGoogle Scholar
  61. Loiselle BA, Sork VL, Nason J, Graham C (1995) Spatial genetic structure of a tropical understory shrub, Psychotria officinalis (Rubiaceae). Am J of Bot 1420–1425Google Scholar
  62. Ludwig G, May R, Otto C (2007) Verantwortlichkeit Deutschlands für die weltweite Erhaltung der Farn-und Blütenpflanzen: vorläufige Liste. BfN, Bonn–BadGodesbergGoogle Scholar
  63. Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220PubMedGoogle Scholar
  64. Maruyama T, Fuerst PA (1985) Population bottlenecks and nonequilibrium models in population genetics II. Number of alleles in a small population that was formed by a recent bottleneck. Genetics 111:675–689PubMedPubMedCentralGoogle Scholar
  65. Matthies D, Bräuer I, Maibom W, Tscharntke T (2004) Population size and the risk of local extinction: empirical evidence from rare plants. Oikos 105:481–488.  https://doi.org/10.1111/j.0030-1299.2004.12800.x CrossRefGoogle Scholar
  66. Meusel H, Jäger EJ (1992) Vergleichende Chorologie der Zentraleuropäischen Flora. Gustav Fischer Verlag, JenaGoogle Scholar
  67. Michalakis Y, Excoffier L (1996) A generic estimation of population subdivision using distances between alleles with special reference for microsatellite loci. Genetics 142:1061–1064PubMedPubMedCentralGoogle Scholar
  68. Montalvo AM, Ellstrand NC (2001) Nonlocal transplantation and outbreeding depression in the subshrub Lotus scoparius (Fabaceae). Am J Bot 88:258–269PubMedCrossRefGoogle Scholar
  69. Mráz P, Gaudeul M, Rioux D, Gielly L, Choler P, Taberlet P, IntraBioDiv Consortium (2007) Genetic structure of Hypochaeris uniflora (Asteraceae) suggests vicariance in the Carpathians and rapid post-glacial colonization of the Alps from an eastern Alpine refugium. J Biogeogr 34:2100–2114.  https://doi.org/10.1111/j.1365-2699.2007.01765.x CrossRefGoogle Scholar
  70. Muller MH, Leppälä J, Savolainen O (2008) Genome-wide effects of postglacial colonization in Arabidopsis lyrata. Heredity 100:47–58PubMedCrossRefGoogle Scholar
  71. Nathan R (2006) Long-distance dispersal of plants. Science 313:786–788.  https://doi.org/10.1126/science.1124975 PubMedCrossRefGoogle Scholar
  72. Nogues-Bravo D, Araujo MB, Romdal T, Rahbek C (2008) Scale effects and human impact on the elevational species richness gradients. Nature 453:216–219.  https://doi.org/10.1038/nature06812 PubMedCrossRefGoogle Scholar
  73. O’Reilly J (2010) Species account: Crepis mollis. Botanical Society of the British Isles. http://www.bsbi.org.uk. Accessed 10 May 2017
  74. Oelmann Y, Broll G, Hölzel N, Kleinebecker T, Vogel A, Schwartze P (2009) Nutrient impoverishment and limitation of productivity after 20 years of conservation management in wet grasslands of north-western Germany. Biol Conserv 142:2941–2948.  https://doi.org/10.1016/j.biocon.2009.07.021 CrossRefGoogle Scholar
  75. Oostermeijer JGB, Altenburg RGM, Den Nijs HCM (1995) Effects of outcrossing distance and selfing on fitness components in the rare Gentiana pneumonanthe (Gentianaceae). Acta Bot Neerl 44:257–268.  https://doi.org/10.1111/j.1438-8677.1995.tb00784.x CrossRefGoogle Scholar
  76. Ottewell KM, Bickerton DC, Byrne M, Lowe AJ (2016) Bridging the gap: a genetic assessment framework for population-level threatened plant conservation prioritization and decision-making. Divers Distrib 22:174–188.  https://doi.org/10.1111/ddi.12387 CrossRefGoogle Scholar
  77. Ouborg NJ, van Treuren R, van Damme JMM (1991) The significance of genetic erosion in the process of extinction. Oecologia 86:359–367PubMedCrossRefGoogle Scholar
  78. Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28:2537–2539.  https://doi.org/10.1111/j.1471-8286.2005.01155.x PubMedPubMedCentralCrossRefGoogle Scholar
  79. Petit RJ, Kremer A, Wagner DB (1993) Finite island model for organelle and nuclear genes in plants. Heredity 71:630–641CrossRefGoogle Scholar
  80. Petit S, Firbank L, Wyatt B, Howard D (2001) MIRABEL: models for integrated review and assessment of biodiversity in European landscapes. Ambio 30:81–88.  https://doi.org/10.1579/0044-7447-30.2.81 PubMedCrossRefGoogle Scholar
  81. Petit RJ, Aguinagalde I, Beaulieu J-L, Bittkau C, Brewer S, Cheddadi R, Ennos R, Fineschi S, Grivet D, Lascoux M, Mohanty A, Müller-Starck G, Demesure-Musch B, Palmé A, Martín JP, Rendell S, Vendramin GG (2003) Glacial refugia: hotspots but not melting pots of genetic diversity. Science 300:1563–1565.  https://doi.org/10.1126/science.1083264 PubMedCrossRefGoogle Scholar
  82. Piry S, Luikart G, Cornuet JM (1999) BOTTLENECK: a computer program for detecting recent reductions in the effective population size suing allele frequency data. J Hered 90:502–503.  https://doi.org/10.1093/jhered/90.4. 502CrossRefGoogle Scholar
  83. Pluess AR, Stöcklin J (2004) Genetic diversity and fitness in Scabiosa columbaria in the Swiss Jura in relation to population size. Conserv Genet 5:145–156.  https://doi.org/10.1023/B:COGE.0000029999.10808.c2 CrossRefGoogle Scholar
  84. Poschlod P, Bakker JP, Kahmen S (2005) Changing land use and its impact on biodiversity. Basic Appl Ecol 6:93–98.  https://doi.org/10.1016/j.baae.2004.12.001 CrossRefGoogle Scholar
  85. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedPubMedCentralGoogle Scholar
  86. Purschke O, Sykes MT, Reitalu T, Poschlod P, Prentice HC (2012) Linking landscape history and dispersal traits in grassland plant communities. Oecologia 168:773–783PubMedCrossRefGoogle Scholar
  87. Purschke O, Sykes MT, Poschlod P, Michalski SG, Römermann C, Durka W, Kühn I, Prentice HC (2014) Interactive effects of landscape history and current management on dispersal trait diversity in grassland plant communities. J Ecol 102:437–446.  https://doi.org/10.1111/1365-2745.12199 PubMedCrossRefGoogle Scholar
  88. R Development Core Team (2013) R: a language and environment for statistical computing. R project for statistical computing, Vienna, AustriaGoogle Scholar
  89. Reichel K, Richter F, Eichel L, Kącki Z, Wesche K, Welk E, Neinhuis C, Ritz CM (2016) Genetic diversity in the locally declining Laserpitium prutenicum L. and the more common Selinum carvifolia (L.) L.—a “silent goodbye”? Conserv Genet 17:847–860.  https://doi.org/10.1007/s10592-016-0827-4 CrossRefGoogle Scholar
  90. Reisch C, Anke A, Röhl M (2005) Molecular variation within and between ten populations of Primula farinosa (Primulaceae) along an altitudinal gradient in the northern Alps. Basic Appl Ecol 6:35–45.  https://doi.org/10.1016/j.baae.2004.09.004 doiCrossRefGoogle Scholar
  91. Rico Y, Wagner H (2016) Reduced fine-scale spatial genetic structure in grazed populations of Dianthus carthusianorum. Heredity 117:367–374PubMedPubMedCentralCrossRefGoogle Scholar
  92. Rico Y, Holderegger R, Boehmer HJ, Wagner HH (2014) Directed dispersal by rotational shepherding supports landscape genetic connectivity in a calcareous grassland plant. Mol Ecol 23:832–842.  https://doi.org/10.1111/mec.12639 PubMedCrossRefGoogle Scholar
  93. Ronikier M, CieŚLak E, Korbecka G (2008) High genetic differentiation in the alpine plant Campanula alpina Jacq. (Campanulaceae): evidence for glacial survival in several Carpathian regions and long-term isolation between the Carpathians and the Alps. Mol Ecol 17:1763–1775.  https://doi.org/10.1111/j.1365-294X.2008.03664.x PubMedCrossRefGoogle Scholar
  94. Rosenberg NA (2004) Distruct: a program for the graphical display of population structure. Mol Ecol Notes 4:137–138.  https://doi.org/10.1046/j.1471-8286.2003.00566.x CrossRefGoogle Scholar
  95. Rousset F (1997) Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145:1219–1228PubMedPubMedCentralGoogle Scholar
  96. Rousset F (2008) Genepop’007: a complete re-implementation of the genepop software for Windows and Linux. Mol Ecol Resour 8:103–106.  https://doi.org/10.1111/j.1471-8286.2007.01931.x PubMedCrossRefGoogle Scholar
  97. Schönswetter P, Tribsch A, Stehlik I, Niklfeld H (2004) Glacial history of high alpine Ranunculus glacialis (Ranunculaceae) in the European Alps in a comparative phylogeographical context. Biol J Linn Soc 81:183–195.  https://doi.org/10.1111/j.1095-8312.2003.00289.x CrossRefGoogle Scholar
  98. Slatkin M (1995) A measure of population subdivision based on microsatellite allele frequencies. Genetics 139:457–462PubMedPubMedCentralGoogle Scholar
  99. Socher SA, Prati D, Boch S, Müller J, Klaus VH, Hölzel N, Fischer M (2012) Direct and productivity-mediated indirect effects of fertilization, mowing and grazing on grassland species richness. J Ecol 100:1391–1399.  https://doi.org/10.1111/j.1365-2745.2012.02020.x CrossRefGoogle Scholar
  100. Strijker D (2005) Marginal lands in Europe—causes of decline. Basic Appl Ecol 6: 99–106.  https://doi.org/10.1016/j.baae.2005.01.001 CrossRefGoogle Scholar
  101. Szczecińska M, Sramko G, Wołosz K, Sawicki J (2016) Genetic diversity and population structure of the rare and endangered plant species Pulsatilla patens (L.) mill in east central Europe. PloS ONE 11:e0151730.  https://doi.org/10.1371/journal.pone.0151730 PubMedPubMedCentralCrossRefGoogle Scholar
  102. Tackenberg O (2001) Methoden zur Bewertung gradueller unterschiede des Ausbreitungspotentials von Pflanzenarten. Modellierung des Windausbreitungspotentials und regelbasierte Ableitung des Fernausbreitungspotentials. Dissertation, Philipps-Universität MarburgGoogle Scholar
  103. Trakhtenbrot A, Nathan R, Perry G, Richardson DM (2005) The importance of long-distance dispersal in biodiversity conservation. Divers Distrib 11:173–181.  https://doi.org/10.1111/j.1366-9516.2005.00156.x CrossRefGoogle Scholar
  104. Trubina M (2014) Effect of temperature and fluorides on growth and development of Crepis tectorum L. seedlings from populations of polluted and nonpolluted habitats. Contemp Probl Ecol 7:104.  https://doi.org/10.1134/S1995425514010168 CrossRefGoogle Scholar
  105. Van Treuren R, Bijlsma R, Van Delden W, Ouborg N (1991) The significance of genetic erosion in the process of extinction. I. Genetic differentiation in Salvia pratensis and Scabiosa columbaria in relation to population size. Heredity 66:181–189CrossRefGoogle Scholar
  106. Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) Micro-checker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538.  https://doi.org/10.1111/j.1471-8286.2004.00684.x CrossRefGoogle Scholar
  107. Vekemans X, Hardy OJ (2004) New insights from fine-scale spatial genetic structure analyses in plant populations. Mol Ecol 13:921–935.  https://doi.org/10.1046/j.1365-294X.2004.02076.x PubMedCrossRefGoogle Scholar
  108. Vitt P, Belmaric PN, Book R, Curran M (2016) Assisted migration as a climate change adaptation strategy: lessons from restoration and plant reintroductions. Isr J Plant Sci 63(4): 250–261.  https://doi.org/10.1080/07929978.2016.1258258 CrossRefGoogle Scholar
  109. Vucetich JA, Waite TA (2003) Spatial patterns of demography and genetic processes across the species’ range: null hypotheses for landscape conservation genetics. Conserv Genet 4:639–645.  https://doi.org/10.1023/A:1025671831349 CrossRefGoogle Scholar
  110. Walker K, Robinson L (2011) Yorkshire’s threatened plants: Northern Hawk’s-beard Crepis mollis. The Naturalist 136:90–99Google Scholar
  111. Walz U (2005) Landschaftszerschneidung in Grenzräumen - Sachsen und die Sächsisch-Böhmische Schweiz. GAIA 14:171–174.  https://doi.org/10.14512/gaia.14.2.22 CrossRefGoogle Scholar
  112. Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370PubMedGoogle Scholar
  113. Wen C, Hsiao J (2001) Altitudinal genetic differentiation and diversity of Taiwan lily (Lilium longiflorum var. formosanum; Liliaceae) using RAPD markers and morphological characters. Int J Plant Sci 162:287–295CrossRefGoogle Scholar
  114. Willi Y, Fischer M (2005) Genetic rescue in interconnected populations of small and large size of the self-incompatible Ranunculus reptans. Heredity 95:437–443.  https://doi.org/10.1038/sj.hdy.680073 PubMedCrossRefGoogle Scholar
  115. Willis (1996) Where did all the flowers go? The fate of temperate European flora during glacial periods. Endeavour 20:110–114.  https://doi.org/10.1016/0160-9327(96)10019-3 CrossRefGoogle Scholar
  116. Wright S (1951) The genetical structure of populations. Ann Eugen 15:323–354PubMedCrossRefGoogle Scholar
  117. Wright S (1978) Evolution and the genetics of populations. Volume 4. Variability between and among natural populations. University of Chicago Press, ChicagoGoogle Scholar
  118. Young A, Boyle T, Brown T (1996) The population genetic consequences of habitat fragmentation for plants. Trends Ecol Evol 11:413–418.  https://doi.org/10.1016/0169-5347(96)10045-8 PubMedCrossRefGoogle Scholar
  119. Zidorn C, Ellmerer-Müller EP, Stuppner H (1999) Guaianolides from Calycocorsus stipitatus and Crepis tingitana. Phytochemistry 50:1061–1062.  https://doi.org/10.1016/S0031-9422(98)00637-2 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  1. 1.Botanischer Garten und Botanisches Museum Berlin, Dahlem Centre of Plant SciencesFreie Universität BerlinBerlinGermany
  2. 2.Institut für Biologie-Botanik, Dahlem Centre of Plant SciencesFreie Universität BerlinBerlinGermany
  3. 3.School of Biological SciencesUniversity of AberdeenAberdeenUK

Personalised recommendations