Conservation Genetics

, Volume 19, Issue 2, pp 439–450 | Cite as

Pedigree reconstruction using molecular data reveals an early warning sign of gene diversity loss in an island population of Tasmanian devils (Sarcophilus harrisii)

  • Elspeth A. McLennan
  • Rebecca M. Gooley
  • Phil Wise
  • Katherine Belov
  • Carolyn J. Hogg
  • Catherine E. Grueber
Research Article

Abstract

Tasmanian devils have experienced an 85% population decline since the emergence of an infectious cancer. In response, a captive insurance population was established in 2006 with a subpopulation later introduced onto Maria Island, Tasmania. We aimed to (1) examine the genetic parameters of the Maria Island population as a stand-alone site and within its broader metapopulation context, (2) assess the efficacy of assisted colonisations, and (3) inform future translocations. This study reconstructs the pedigree of 86 island-born devils using 31 polymorphic microsatellite loci. Combined molecular and pedigree analysis was used to monitor change in population genetic parameters in 4 years since colonisation. Molecular analysis alone revealed no significant change in genetic diversity, while DNA-reconstructed pedigree analysis revealed a statistically significant increase in inbreeding due to skewed founder representation. Pedigree modelling predicted that gene diversity would only be maintained above the threshold of 95% for a further 2 years, dropping to 77.1% after 40 years. Modelling alternative supplementation strategies revealed introducing eight new founders every 3 years will enable the population to retain 95% gene diversity until 2056, provided the translocated animals breed; to ensure this we recommend introducing ten new females every 3 years. We highlight the value of combining pedigree analyses with molecular data, from both a single-site and metapopulation viewpoint, for analysing changes in genetic parameters within populations of conservation concern. The importance of post-release genetic monitoring in an established population is emphasised, given how quickly inbreeding can accumulate and gene diversity be lost.

Keywords

Genetic monitoring Inbreeding Maria Island Metapopulation Translocation 

Notes

Acknowledgements

We thank the Save the Tasmanian Devil Program, in particular Phil Wise and Drew Lee, for providing essential DNA samples and field observation data for the Maria Island devil population. Thank you to Drew Lee for providing a map of Maria Island used in Fig. 1. Thanks also to the studbook keeper (C. Srb) for her maintenance of the Tasmanian devil studbook and species management from the Zoo and Aquarium Association Australasia. We thank two anonymous reviewers for their comments that improved this manuscript.

Funding

Funding for this study was provided via an ARC Linkage grant to KB, CJH and CEG (LP140100508).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All Tasmanian devils sampled as part of the monitoring for the Maria Island population were done so under permit and the standard operating procedure of the Tasmanian Department of Primary Industries, Population, Water and the Environment.

Supplementary material

10592_2017_1017_MOESM1_ESM.docx (24 kb)
Supplementary material 1 (DOCX 28 KB)

References

  1. Allendorf FW, Luikart GH, Aitken SN (2012) Conservation and the genetics of populations. Wiley, ChicesterGoogle Scholar
  2. Arthington AH (1991) Ecological and genetic impacts of introduced and translocated freshwater fishes in Australia. Can J Fish Aquat Sci 48:33–43. doi: 10.1139/f91-302 CrossRefGoogle Scholar
  3. Bradshaw CJA, Brook BW (2005) Disease and the devil: density-dependent epidemiological processes explain historical population fluctuations in the Tasmanian devil. Ecography 28:181–190. doi: 10.1111/j.0906-7590.2005.04088.x CrossRefGoogle Scholar
  4. Cardoso MJ, Eldridge MDB, Oakwood M, Rankmore B, Sherwin WB, Firestone KB (2009) Effects of founder events on the genetic variation of translocated island populations: implications for conservation management of the northern quoll. Conserv Genet 10:1719–1733. doi: 10.1007/s10592-008-9774-z CrossRefGoogle Scholar
  5. Cheng Y, Sanderson C, Jones M, Belov K (2012) Low MHC class II diversity in the Tasmanian devil (Sarcophilus harrisii). Immunogenetics 64:525–533. doi: 10.1007/s00251-012-0614-4 CrossRefPubMedGoogle Scholar
  6. Clayton JA, Pavey CR, Vernes K, Tighe M (2014) Review and analysis of Australian macropod translocations 1969–2006. Mammal Rev 44:109–123. doi: 10.1111/mam.12020 CrossRefGoogle Scholar
  7. Coulon A (2010) GENHET: an easy-to-use R function to estimate individual heterozygosity. Mol Ecol Resour 10:167–169. doi: 10.1111/j.1755-0998.2009.02731.x CrossRefPubMedGoogle Scholar
  8. Cui J, Cheng Y, Belov K (2015) Diversity in the toll-like receptor genes of the Tasmanian devil (Sarcophilus harrisii). Immunogenetics 67:195–201. doi: 10.1007/s00251-014-0823-0 CrossRefPubMedGoogle Scholar
  9. Earnhardt JM, Thompson SD, Schad K (2004) Strategic planning for captive populations: projecting changes in genetic diversity. Anim Conserv 7:9–16. doi: 10.1017/S1367943003001161 CrossRefGoogle Scholar
  10. Epstein B, Jones M, Hamede R, Hendricks S, McCallum H, Murchison EP, Schonfeld B, Wiench C, Hohenlohe P, Storfer A (2016) Rapid evolutionary response to a transmissible cancer in Tasmanian devils. Nat Commun 7:12684. doi: 10.1038/ncomms12684 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Ewing SR, Nager RG, Nicoll MA, Aumjaud A, Jones CG, Keller LF (2008) Inbreeding and loss of genetic variation in a reintroduced population of Mauritius kestrel. Conserv Biol 22:395–404CrossRefPubMedGoogle Scholar
  12. Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567. doi: 10.1111/j.1755-0998.2010.02847.x CrossRefPubMedGoogle Scholar
  13. Frankham R (1998) Inbreeding and extinction: Island populations. Conserv Biol 12:665–675. doi: 10.1111/j.1523-1739.1998.96456.x CrossRefGoogle Scholar
  14. Frankham R, Ballou JD, Briscoe DA (2010) Introduction to conservation genetics. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  15. Gooley RM, Hogg CJ, Belov K, Grueber CE (2017) No evidence of inbreeding depression in a Tasmanian devil insurance population despite significant variation in inbreeding. Sci Rep 7:1830. doi: 10.1038/s41598-017-02000-y CrossRefPubMedPubMedCentralGoogle Scholar
  16. Griffith B, Scott JM, Carpenter JW, Reed C (1989) Translocation as a species conservation tool: status and strategy. Science 245:477–480CrossRefPubMedGoogle Scholar
  17. Groombridge JJ, Raisin C, Bristol R, Richardson DS (2012) Genetic consequences of reintroductions and insights from population history. In: Ewen J, Armstrong D, Parker K, Seddon P (eds) Reintroduction biology: integrating science and management. Wiley-Blackwell, New Jersey, pp 395–440CrossRefGoogle Scholar
  18. Grueber CE, Jamieson IG (2008) Quantifying and managing the loss of genetic variation in a free-ranging population of takahe through the use of pedigrees. Conserv Genet 9:645–651. doi: 10.1007/s10592-007-9390-3 CrossRefGoogle Scholar
  19. Grueber CE, Knafler GJ, King TM, Senior AM, Grosser S, Robertson B, Weston KA, Brekke P, Harris CLW, Jamieson IG (2015a) Toll-like receptor diversity in 10 threatened bird species: relationship with microsatellite heterozygosity. Conserv Genet 16:595–611. doi: 10.1007/s10592-014-0685-x CrossRefGoogle Scholar
  20. Grueber CE, Peel E, Gooley R, Belov K (2015b) Genomic insights into a contagious cancer in Tasmanian devils. Trends Genet 31:528–535. doi: 10.1016/j.tig.2015.05.001 CrossRefPubMedGoogle Scholar
  21. Grueber CE, Reid-Wainscoat EE, Fox S, Belov K, Shier DM, Hogg CJ, Pemberton D (2017) Increasing generations in captivity is associated with increased vulnerability of Tasmanian devils to vehicle strike following release to the wild. Sci Rep 7:2161. doi: 10.1038/s41598-017-02273-3 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Guiler E (1970) Observations on the Tasmanian Devil, Sarcophilus harrisii (Marsupialia : Dasyuridae) II. Reproduction, breeding and growth of pouch young. Aust J Zool 18:63–70CrossRefGoogle Scholar
  23. Guo SW, Thompson EA (1992) Performing the exact test of hardy-weinberg proportion for multiple alleles. Biometrics 48:361–372. doi: 10.2307/2532296 CrossRefPubMedGoogle Scholar
  24. Haig SM, Ballou JD (2002) Pedigree analyses in wild populations. In: McCullough D, Beissinger S (eds) Population viability analysis. University of Chicago Press, Chicago, pp 388–405Google Scholar
  25. Hawkins CE, Baars C, Hesterman H, Hocking GJ, Jones ME, Lazenby B, Mann D, Mooney N, Pemberton D, Pyecroft S, Restani M, Wiersma J (2006) Emerging disease and population decline of an island endemic, the Tasmanian devil (Sarcophilus harrisii). Biol Conserv 131:307–324. doi: 10.1016/j.biocon.2006.04.010 CrossRefGoogle Scholar
  26. Hesterman H, Jones SM, Schwarzenberger F (2008) Reproductive endocrinology of the largest dasyurids: Characterization of ovarian cycles by plasma and fecal steroid monitoring. Part I. The Tasmanian devil (Sarcophilus harrisii). Gen Comp Endocrinol 155:234–244CrossRefPubMedGoogle Scholar
  27. Hogg CJ, Lee AV (2014) DPIPWE-ZAA Tasmanian devil insurance population captive management plan 2014–2018. Zoo and Aquarium Association Australasia, SydneyGoogle Scholar
  28. Hogg C, Srb C, Hockley J (2013) Annual Report for the DPIPWE-ZAA Tasmanian Devil Insurance Population. Zoo and Aquarium Association Australasia, Sydney, AustraliaGoogle Scholar
  29. Hogg CJ, Ivy JA, Srb C, Hockley J, Lees C, Hibbard C, Jones M (2015) Influence of genetic provenance and birth origin on productivity of the Tasmanian devil insurance population. Conserv Genet 16:1465–1473. doi: 10.1007/s10592-015-0754-9 CrossRefGoogle Scholar
  30. Hogg CJ, Lee AV, Srb C, Hibbard C (2016) Metapopulation management of an endangered species with limited genetic diversity in the presence of disease: the Tasmanian devil Sarcophilus harrisii. Int Zoo Yearb 51:1–17. doi: 10.1111/izy.12144 Google Scholar
  31. Hughes R (1982) Reproduction in the Tasmanian devil Sarcophilus harrisii (Dasyuridae, Marsupialia). In: Archer M (ed) Carnivorous marsupials, vol 1. Royal Zoological Society of New South Wales, Sydney, pp 49–63Google Scholar
  32. Jamieson IG, Wallis GP, Briskie JV (2006) Inbreeding and endangered species management: Is New Zealand out of step with the rest of the world? Conserv Biol 20:38–47. doi: 10.1111/j.1523-1739.2005.00282.x CrossRefPubMedGoogle Scholar
  33. Johnson WE, Onorato DP, Roelke ME, Land ED, Cunningham M, Belden RC, McBride R, Jansen D, Lotz M, Shindle D, Howard J, Wildt DE, Penfold LM, Hostetler JA, Oli MK, O'Brien SJ (2010) Genetic restoration of the Florida panther. Science 329:1641–1645. doi: 10.1126/science.1192891 CrossRefPubMedGoogle Scholar
  34. Jones M, McCallum H (2007) Environmental risk assessment - impact of the introduction of Tasmanian devils to Maria island on the natural values of the islandGoogle Scholar
  35. Jones M (1995) Tasmanian devil Sarcophilus harrisii. In: Van Dyck S, Strahan R (eds) The Mammals of Australia. New Holland Publishers, Sydney, pp 82–84Google Scholar
  36. Jones ME, Paetkau D, Geffen E, Moritz C (2003) Microsatellites for the Tasmanian devil (Sarcophilus laniarius). Mol Ecol Notes 3:277–279. doi: 10.1046/j.1471-8286.2003.00425.x CrossRefGoogle Scholar
  37. Jones ME, Paetkau D, Geffen ELI, Moritz C (2004) Genetic diversity and population structure of Tasmanian devils, the largest marsupial carnivore. Mol Ecol 13:2197–2209. doi: 10.1111/j.1365-294X.2004.02239.x CrossRefPubMedGoogle Scholar
  38. Jones ME, Cockburn A, Hamede R, Hawkins C, Hesterman H, Lachish S, Mann D, McCallum H, Pemberton D (2008) Life-history change in disease-ravaged Tasmanian devil populations. Proc Natl Acad Sci U S A 105:10023–10027. doi: 10.1073/pnas.0711236105 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Kalinowski ST, Taper ML, Marshall TC (2007) Revising how the computer program cervus accommodates genotyping error increases success in paternity assignment. Mol Ecol 16:1099–1106. doi: 10.1111/j.1365-294X.2007.03089.x CrossRefPubMedGoogle Scholar
  40. Lacy RC (1989) Analysis of founder representation in pedigrees: Founder equivalents and founder genome equivalents. Zoo Biol 8:111–123. doi: 10.1002/zoo.1430080203 CrossRefGoogle Scholar
  41. Lacy RC, Ballou JD, Pollak JP (2012) PMx: software package for demographic and genetic analysis and management of pedigreed populations: PMx software for pedigree analysis. Methods Ecol Evol 3:433–437. doi: 10.1111/j.2041-210X.2011.00148.x CrossRefGoogle Scholar
  42. Lees C, Andrew P, Sharman A, Byers O (2013) Saving the devil: one species, one plan. WAZA Magazine 14:37–40Google Scholar
  43. Leus K, Traylor-Holzer K, Lacy RC (2011) Genetic and demographic population management in zoos and aquariums: recent developments, future challenges and opportunities for scientific research. Int Zoo Yearb 45:213–225. doi: 10.1111/j.1748-1090.2011.00138.x CrossRefGoogle Scholar
  44. Liu N, Chen L, Wang S, Oh C, Zhao H (2005) Comparison of single-nucleotide polymorphisms and microsatellites in inference of population structure. BMC Genet 6 Suppl 1:S26. doi: 10.1186/1471-2156-6-S1-S26
  45. MacCluer JW, VandeBerg JL, Read B, Ryder OA (1986) Pedigree analysis by computer simulation. Zoo Biol 5:147–160. doi: 10.1002/zoo.1430050209 CrossRefGoogle Scholar
  46. Mallick S (2003) Translocation of Tasmanian devils Sarcophilus harrisii (now laniarius) to Tasmanian offshore islands - a proposed measure to quarantine an infection-free population from devil facial tumour (DFT) disease: selection of potential islands and preliminary cost/benefit assessmentGoogle Scholar
  47. Marshall T, Slate J, Kruuk L, Pemberton J (1998) Statistical confidence for likelihood-based paternity inference in natural populations. Mol Ecol 7:639–655CrossRefPubMedGoogle Scholar
  48. McCallum H, Tompkins DM, Jones ME, Lachish S, Mervanek S, Lazenby B, Hocking G, Wiersma J, Hawkins CE (2007) Distribution and impacts of Tasmanian devil facial tumor disease. EcoHealth 4:318–325. doi: 10.1007/s10393-007-0118-0 CrossRefGoogle Scholar
  49. Miller W, Miller J, Hayes VM, Ratan A, Petersen DC, Wittekindt NE, Walenz B, Knight J, Qi J, Zhao F, Wang Q, Bedoya-Reina OC, Katiyar M, Tomsho LP, Kasson LM, Hardie RA, Woodbridge P, Tindall EA, Bertelsen MF, Dixon D, Pyecroft S, Helgen KM, Lesk AM, Pringle TH, Patterson N, Zhang Y, Kreiss A, Woods GA, Jones ME, Schuster SC (2011) Genetic diversity and population structure of the endangered marsupial Sarcophilus harrisii (Tasmanian devil). Proc Natl Acad Sci USA 108:12348–12353. doi: 10.1073/pnas.1102838108 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Morris K, Austin JJ, Belov K (2013) Low major histocompatibility complex diversity in the Tasmanian devil predates European settlement and may explain susceptibility to disease epidemics. Biol Lett 9:20120900. doi: 10.1098/rsbl.2012.0900 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Nei M (1973) Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci USA 70:3321–3323CrossRefPubMedPubMedCentralGoogle Scholar
  52. Ottewell K, Dunlop J, Thomas N, Morris K, Coates D, Byrne M (2014) Evaluating success of translocations in maintaining genetic diversity in a threatened mammal. Biol Conserv 171:209–219CrossRefGoogle Scholar
  53. Peakall R, Smouse PE (2006) GenAlEx 6: genetic analysis in Excel: Population genetic software for teaching and research. Mol Ecol Notes 6:288–295. doi: 10.1111/j.1471-8286.2005.01155.x CrossRefGoogle Scholar
  54. Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel: Population genetic software for teaching and research - an update. Bioinformatics 28:2537–2539. doi: 10.1093/bioinformatics/bts460 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Pemberton D (1990) Social organisation and behaviour of the Tasmanian devil, Sarcophilus harrisii. Dissertation. University of Tasmania, HobartGoogle Scholar
  56. Pemberton JM (2008) Wild pedigrees: the way forward. Proc R Soc Biol 275:613–621. doi: 10.1098/rspb.2007.1531 CrossRefGoogle Scholar
  57. Pemberton D, Gales S, Bauer B, Gales R, Lazenby B, Medlock K (2008) The diet of the Tasmanian devil, Sarcophilus harrisii, as determined from analysis of scat and stomach contents. Pap Proc R Soc Tasmania 2:13–22Google Scholar
  58. Puckett EE, Kristensen TV, Wilton CM, Lyda SB, Noyce KV, Holahan PM, Leslie DM, Beringer J, Belant JL, White D, Eggert LS (2014) Influence of drift and admixture on population structure of American black bears (Ursus americanus) in the Central Interior Highlands, USA, 50 years after translocation. Mol Ecol 23:2414–2427. doi: 10.1111/mec.12748 CrossRefPubMedGoogle Scholar
  59. R Development Core Team (2015) R: A language and environment for statistical computing. R Foundation for Statistical Computing. http://www.R-project.org. Accessed May 2016
  60. Robinson SP, Simmons LW, Kennington WJ (2013) Estimating relatedness and inbreeding using molecular markers and pedigrees: the effect of demographic history. Mol Ecol 22:5779–5792. doi: 10.1111/mec.12529 CrossRefPubMedGoogle Scholar
  61. Rogers T, Fox S, Pemberton D, Wise P (2016) Sympathy for the devil: captive-management style did not influence survival, body-mass change or diet of Tasmanian devils 1 year after wild release. Wildl Res 43:544–552. doi: 10.1071/wr15221 Google Scholar
  62. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning. Cold Spring Harbor Laboratory Press, New YorkGoogle Scholar
  63. Santure AW, Stapley J, Ball AD, Birkhead TR, Burke T, Slate JON (2010) On the use of large marker panels to estimate inbreeding and relatedness: empirical and simulation studies of a pedigreed zebra finch population typed at 771 SNPs. Mol Ecol 19:1439–1451. doi: 10.1111/j.1365-294X.2010.04554.x CrossRefPubMedGoogle Scholar
  64. Seddon PJ, Moro D, Mitchell NJ, Chauvenet A, Mawson P (2015) Proactive conservation or planned invasion? Past, current and future use of assisted colonisation. In: Armstrong D, Hayward M, Moro D, Seddon P (eds) Advances in reintroduction biology of Australian and New Zealand Fauna. CSIRO Publishing, Melbourne, pp 105–126Google Scholar
  65. Sigg DP, Goldizen AW, Pople AR (2005) The importance of mating system in translocation programs: reproductive success of released male bridled nailtail wallabies. Biol Conserv 123:289–300CrossRefGoogle Scholar
  66. Srb C (2015) Tasmanian devil studbook. Healesville Sanctuary on behalf of the Zoo and Aquarium Association, HealesvilleGoogle Scholar
  67. Swan KD, McPherson JM, Seddon PJ, Moehrenschlager A (2016) Managing marine biodiversity: the rising diversity and prevalence of marine conservation translocations. Conserv Lett 9:239–251CrossRefGoogle Scholar
  68. Taylor SS, Sardell RJ, Reid JM, Bucher T, Taylor NG, Arcese P, Keller LF (2010) Inbreeding coefficient and heterozygosity-fitness correlations in unhatched and hatched song sparrow nestmates. Mol Ecol 19:4454–4461. doi: 10.1111/j.1365-294X.2010.04824.x CrossRefPubMedGoogle Scholar
  69. Thalmann S, Peck S, Wise P, Potts JM, Clarke J, Richley J (2016) Translocation of a top-order carnivore: tracking the initial survival, spatial movement, home-range establishment and habitat use of Tasmanian devils on Maria island. Aust Mammal 38:68–79CrossRefGoogle Scholar
  70. Warton D, Hui F (2011) The arcsine is asinine: the analysis of proportions in ecology. Ecology 92:3–10CrossRefPubMedGoogle Scholar
  71. Weeks AR, Sgro CM, Young AG, Frankham R, Mitchell NJ, Miller KA, Byrne M, Coates DJ, Eldridge MDB, Sunnucks P, Breed MF, James EA, Hoffman AA (2011) Assessing the benefits and risks of translocations in changing environments: a genetic perspective. Evol Appl 4:709–725. doi: 10.1111/j.1752-4571.2011.00192.x CrossRefPubMedPubMedCentralGoogle Scholar
  72. Wise P, Lee AV, Peck S, Clarke J, Thalmann S, Hockley J, Schaap D, Pemberton D (2016) The conservation introduction of Tasmanian devils to Maria island National Park: A response to devil facial tumour disease (DFTD). In: Soorae PS (ed) Global Re-introduction Perspectives: 2016. Case studies from around the globe. IUCN/SSC Re-introduction Specialist Group and Abu Dhabi, UAE: Environment Agency Abu Dhabi. Gland, Switzerland, pp 166–171Google Scholar
  73. Wright B, Morris K, Grueber CE, Willet CE, Gooley RM, Hogg CJ, O'Meally D, Hamede R, Jones ME, Wade C, Belov K (2015) Development of a SNP-based assay for measuring genetic diversity in the Tasmanian devil insurance population. BMC Genomics 16:791CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.School of Life and Environmental SciencesUniversity of SydneySydneyAustralia
  2. 2.Save the Tasmanian Devil Program, DPIPWEHobartAustralia
  3. 3.Zoo and Aquarium Association AustralasiaMosmanAustralia
  4. 4.San Diego Zoo GlobalSan DiegoUSA

Personalised recommendations