Advertisement

Conservation Genetics

, Volume 19, Issue 1, pp 181–191 | Cite as

Hybridization rate and genotypic diversity of apomictic hybrids between native (Taraxacum japonicum) and introduced (T. officinale) dandelions in western Japan

  • Shuhei MatsuyamaEmail author
  • Miki Morimoto
  • Tsuyoshi Harata
  • Satoshi Nanami
  • Akira Itoh
Research Article
  • 349 Downloads

Abstract

Hybridization between the introduced and native plants may enhance invasiveness, especially in asexually reproducing species. Hybrid apomictic dandelions between native (Taraxacum platycarpum and T. japonicum) and exotic (T. officinale) species are distributed widely throughout Japan. To estimate the origin(s) and dispersal of the hybrids, we investigated the hybridization rate and genotypic diversity in mixed populations of T. japonicum, T. officinale and their hybrids at two green parks in western Japan. Among the plants identified as exotics from flower morphology, 86–96% were hybrids by genetic analysis. Genetic data with simple sequence repeat markers revealed a high clonal diversity of the hybrid both within and between populations, indicating multiple origins. A hybrid seed was found from among the 1891 seeds collected from T. japonicum in the parks, indicating ongoing hybridization in the field. T. officinale and hybrids were genetically differentiated between the two parks independent of the ploidy level; the allele frequency of T. officinale and tri- and tetraploid hybrids were similar within each park but different between the two parks. This suggests that the origins of hybrids were similar within the park but different between the parks. Overall, our results suggest that hybridization, including backcross, is an ongoing process, and that genetically diverse hybrids with various origins have been spreading in western Japan, probably because hybridization enhanced invasiveness at native habitat.

Keywords

Backcross hybrid Biological invasion DAPC Flow cytometry Polyploidy SSR 

Notes

Acknowledgements

The present study was conducted with financial support from Grant-in-Aid for Scientific Research (#18510124, #24510330) of the Japan Society for the Promotion of Science (JSPS) and Nippon Life Insurance Foundation, Japan. We owe special thanks to the Botanical Gardens of Osaka City University and the Oizumi Park, regarding our fieldwork. We also thank the members of the Plant Ecology Laboratory, Osaka City University for field assistance and helpful comments.

References

  1. Ainouche ML, Baumel A, Salmon A, Yannic G (2003) Hybridization, polyploidy and speciation in Spartina (Poaceae). New Phytol 161:165–172CrossRefGoogle Scholar
  2. Akasaka S, Itoh A, Nanami S, Hirayama D, Yamakura T (2007) Effects of tempearture on germination of hybrid dandelions in the Kinki region, Japan. Bull Kansai Org Nat Conserv 29:103–112 (Japanese) Google Scholar
  3. Bailey JP, Bímová K, Mandák B (2007) The potential role of polyploidy and hybridisation in the further evolution of the highly invasive Fallopia taxa in Europe. Ecol Res 22:920–928. doi: 10.1007/s11284-007-0419-3 CrossRefGoogle Scholar
  4. Bruvo R, Michiels NK, D’Souza TG, Schulenburg H (2004) A simple method for the calculation of microsatellite genotype distances irrespective of ploidy level. Mol Ecol 13:2101–2106CrossRefPubMedGoogle Scholar
  5. Chapman HM, Parh D, Oraguzie N (2000) Genetic structure and colonizing success of a clonal, weedy species, Pilosella officinarum (Asteraceae). Heredity 84:401–409. doi: 10.1046/j.1365-2540.2000.00657.x CrossRefPubMedGoogle Scholar
  6. Clark LV, Jasieniuk M (2011) POLYSAT: an R package for polyploidy microsatellite analysis. Mole Ecol Resour 11:562–566CrossRefGoogle Scholar
  7. Ellstrand NC (2009) Evolution of invasiveness in plants following hybridization. Biol Invasions 11:1089–1091. doi: 10.1007/s10530-008-9389-9 CrossRefGoogle Scholar
  8. Ellstrand NC, Schierenbeck KA (2000) Hybridization as a stimulus for the evolution of invasiveness in plants? PNAS 97:7043–7050CrossRefPubMedPubMedCentralGoogle Scholar
  9. Falque M, Keurentjes J, Bakx-Schotman JMT, van Dijk PJ (1998) Development and characterization of microsatellite markers in the sexual-apomictic complex Taraxacum officinale (dandelion). Theor Appl Genet 97:283–292CrossRefGoogle Scholar
  10. Grimsby JL, Tsirelson D, Gammon M, Kesseli R (2007) Genetic diversity and clonal vs. sexual reproduction in Fallopia spp. (Polygonaceae). Am J Bot 94:957–964. doi: 10.3732/ajb.94.6.957 CrossRefPubMedGoogle Scholar
  11. Hollingsworth ML, Bailey JP (2000) Evidence for massive clonal growth in the invasive weed Fallopia japonica (Japanese knotweed). Bot J Linn Soc 133:463–472. doi: 10.1006/bojl.2000.0359 CrossRefGoogle Scholar
  12. Hoya A (2010) Evolution of the hybrid dandelions. In: Muranaka T, Ishihama F (eds) Ecology of invasion species. Bunichi Sogo Shuppan, Tokyo, pp 217–246 (Japanese) Google Scholar
  13. Hoya A, Shibaike H, Morita T, Ito M (2004) Germination and seedling survivorship characteristics of hybrids between native and alien species of dandelion (Taraxacum). Plant Spec Biol 19:81–90CrossRefGoogle Scholar
  14. Itoh A, Nanami S, Fukunishi Y, Morimoto M (2011) Distribution of hybrids between T. japonicum and T. officinale in West Japan. In: Reports for dandelions survey 2010 in west Japan (ed) The Executive Committee of Dandelions Survey 2010 in West Japan. Atworks Co., Osaka, pp 40–43 (Japanese)Google Scholar
  15. Jombart T (2008) Adegenet: A R package for the multivariate analysis of genetic markers. Bioinformatics 24:1403–1405. doi: 10.1093/bioinformatics/btn129 CrossRefPubMedGoogle Scholar
  16. Jombart T, Devillard S, Balloux F (2010) Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet 11:94. doi: 10.1186/1471-2156-11-94 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Kloda JM, Dean PDG, Maddren C, MacDonald DW, Mayes S (2008) Using principle component analysis to compare genetic diversity across polyploidy levels within plant complexes: an example from British Restharrows (Ononis spinosa and Ononis repens). Heredity 100:253–260CrossRefPubMedGoogle Scholar
  18. Lo EYY, Stefanović S, Dickinson TA (2009) Population genetic structure of diploid sexual and polyploid apomictic hawthorns (Crataegus; Rosaceae) in the Pacific Northwest. Mole Ecol 18:1145–1160. doi: 10.1111/j.1365-294X.2009.04091.x CrossRefGoogle Scholar
  19. Loomis ES, Fishman L (2009) A continent-wide clone: population genetic variation of the invasive plant Hieracium aurantiacum (orange hawkweed; Asteraceae) in North America. Int J Plant Sci 170:759–765. doi: 10.1086/599241 CrossRefGoogle Scholar
  20. Lyman JC, Ellstrand NC (1984) Clonal diversity in Taraxacum officinale (Compositae), an apomict. Heredity 53:1–10CrossRefGoogle Scholar
  21. Majeský L, Vašut RJ, Kitner M, Trávníček B (2012) The pattern of genetic variability in apomictic clones of Taraxacum officinale indicates the alternation of asexual and sexual histories of apomicts. PLoS ONE 7(8):e41868. doi: 10.1371/journal.pone.0041868 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Malecka J (1973) Problems of the mode of reproduction in microspecies of Taraxacum section Palustria Dahlstedt. Acta Biol Crac 16:37–84Google Scholar
  23. Mallet J (2005) Hybridization as an invasion of the genome. Trends Ecol Evol 20(5):229–237. doi: 10.1016/j.tree.2005.02.010 CrossRefPubMedGoogle Scholar
  24. Mandak B, Pysek P, Bimova K (2004) History of the invasion and distribution of Reynoutria taxa in the Czech Republic: a hybrid spreading faster than its parents. Preslia 76:15–64Google Scholar
  25. Mártonfiová L (2006) Possible pathways of the gene flow in Taraxacum sect. Ruderalia. Folia Geobot 41:183–201CrossRefGoogle Scholar
  26. Meirmans PG, van Tienderen PH (2004) Genotype and genodive: two programs for the analysis of genetic diversity of asexual organisms. Mol Ecol Notes 4:792–794. doi: 10.1111/j.1471-8286.2004.00770.x CrossRefGoogle Scholar
  27. Meirmans PG, Vlot EC, Den Nijs JCM, Menken SBJ (2003) Spatial ecological and genetic structure of a mixed population of sexual diploid and apomictic triploid dandelions. J Evol Biol 16:343–352CrossRefPubMedGoogle Scholar
  28. Mitsuyuki C, Hoya A, Shibaike H, Watanabe M, Yahara T (2014) Formation of a hybrid triploid agamosperm on a sexual diploid plant: evidence from progeny tests in Taraxacum platyarpum Dahlst. Plant Syst Evol 300:863–870. doi: 10.1007/s00606-013-0925-4 CrossRefGoogle Scholar
  29. Morita T (1995) Taraxacum Weber ex F.H. Wigg. In: Iwatsuki K, Yamazaki T, Boufford DE, Ohba H (eds) Flora of Japan, vol IIIb. Kodansha, TokyoGoogle Scholar
  30. Morita T (2012) Natural history of naturalized plants: ecology of invasion and disturbance. Hokkaido University Press, Hokkaido (Japanese) Google Scholar
  31. Morita T, Menken SBJ, Sterk AA (1990) Hybridization between European and Asian dandelions (Taraxacum section Ruderalia and section Mongolica). 1. Crossability and breakdown of self-incompatibility. New Phytol 114:519–529. doi: 10.1111/j.1469-8137.1990.tb00420.x CrossRefGoogle Scholar
  32. Novak SJ, Soltis DE, Soltis PS (1991) Ownbey’s Tragopogons: 40 years later. Am J Bot 78:1586–1600CrossRefGoogle Scholar
  33. Ogawa K (1991) Land-use selection by dandelions in the Tokyo metropolitan area, Japan. Ecol Res 6:233–246CrossRefGoogle Scholar
  34. Ogawa K (2002) Alien dandelions. In: The Ecological Society of Japan (ed) Handbook of alien species in Japan. Chijinshokan, Tokyo, p. 192 (Japanese) Google Scholar
  35. Ogawa K, Mototani I (1985) Invasion of the introduced dandelions and survival of the native ones in the Tokyo metropolitan area of Japan. Jpn J Ecol 33:443–452Google Scholar
  36. Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2015) Vegan: community ecology package R package version 2.2-1. http://CRAN.R-project.org/package=vegan
  37. Parepa M, Fischer M, Krebs C, Bossdorf O (2014) Hybridization increases invasive knotweed success. Evol Appl 7:413–420. doi: 10.1111/eva.12139 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Pfeiffer T, Roschanski AM, Pannell JR, Korbecka G, Schnittler M (2011) Characterization of microsatellite loci and reliable genotyping in a polyploid plant, Mercurialis perennis (Euphorbiaceae). J Hered 102:479–488. doi: 10.1093/jhered/esr024 CrossRefPubMedGoogle Scholar
  39. R Core Team (2013) R: a language and environment for statistical computing. R foundation for statistical computing, Vienna. http://www.R-project.org/
  40. Ridley CE, Ellstrand NC (2009) Evolution of enhanced reproduction in the hybrid-derived invasive, California wild radish (Raphanus sativus). Biol Invasions 11:2251–2264CrossRefGoogle Scholar
  41. Shibaike H, Akiyama H, Uchiyama S, Kasai K, Morita T (2002) Hybridization between European and Asian dandelions (Taraxacum section Ruderalia and section Mongolica) 2. Natural hybrids in Japan detected by chloroplast DNA marker. J Plant Res 115:321–328. doi: 10.1007/210265-002-0045-7 CrossRefPubMedGoogle Scholar
  42. Shimizu T (2003) Naturalized plants of Japan. Heibonsha, TokyoGoogle Scholar
  43. Sørensen T (1958) Sexual chromosomes-aberrants in triploid apoictic Taraxacum. Botanisk Tidsskrift 54:1–22Google Scholar
  44. Takaiwa F, Oono K, Sugiura M (1985) Nucleotide sequence of the 17S-25S spacer region from rice rDNA. Pl Mole Biol 4:355–364CrossRefGoogle Scholar
  45. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739. doi: 10.1093/molbev/msr121 CrossRefPubMedPubMedCentralGoogle Scholar
  46. te Beest M, Roux JJL, Richardson DM, Brysting AK, Suda J, Kubešová M, Pyšek P (2012) The more the better? the role of polyploidy in facilitating plant invasions. Ann Bot 109:19–45. doi: 10.1093/aob/mcr277 CrossRefPubMedGoogle Scholar
  47. van Dijk PJ, Tas ICQ, Falque M, Bakx-Schotman (1999) Crosses between sexual and apomictic dandelions (Taraxacum). II. The breakdown of apomixis. Heredity 83:715–721CrossRefPubMedGoogle Scholar
  48. van der Hulst RGM, Mes THM, Den Nijs JCM, Bachmann K (2000) Amplified fragment length polymorphism (AFLP) markers reveal that population structure of triploid dandelions (Taraxacum officinale) exhibits both clonality and recombination. Mol Ecol 9:1–8CrossRefGoogle Scholar
  49. van der Hulst RGM, Mes THM, Falque M, Stam P, den Nijs JCM, Bachmann K (2003) Genetic structure of a population sample of apomictic dandelions. Heredity 90:326–335CrossRefGoogle Scholar
  50. Vašut RJ, van Dijk PJ, Falque M, Trávníček B, de Jong JH (2004) Development and characterization of nine new microsatellite markers in Taraxacum (Asteraceae). Mol Ecol Note 4:645–648. doi: 10.1111/j.1471-8286.2004.00760.x CrossRefGoogle Scholar
  51. Vilà M, Weber E, Antonio CMD (2000) Conservation implications of invasion by plant hybridization. Biol Invasions 2:207–217. doi: 10.1023/A:1010003603310 CrossRefGoogle Scholar
  52. Watanabe M, Maruyama Y, Serizawa S (1997) Hybridization between native and alien dandelions in the western Tokai district: (1) frequency and morphological characters of the hybrid between Taraxacum platycarpum and T. officinale. J Jpn Bot 72:51–57 (Japanese with English summary) Google Scholar
  53. Watanabe M, Kanzaki M, Kushida T, Serizawa S (2003) Characteristics of germination of native, exotic and hybrid dandelions. J Phytogeogr Taxon 51:183–186 (Japanese) Google Scholar
  54. Zhang D, Mischke S, Goenaga R, Hemeida AA, Saunders JA (2006) Accuracy and reliability of high-throughput microsatellite genotyping for cacao clone identification. Crop Sci 46:2084–2092. doi: 10.2135/cropsci2006.01.0004 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Shuhei Matsuyama
    • 1
    • 2
    Email author
  • Miki Morimoto
    • 1
  • Tsuyoshi Harata
    • 1
  • Satoshi Nanami
    • 1
  • Akira Itoh
    • 1
  1. 1.Laboratory of Plant Ecology, Graduate School of ScienceOsaka City UniversityOsakaJapan
  2. 2.College of Agriculture, Food and Environmental ScienceRakuno Gakuen UniversityEbetsuJapan

Personalised recommendations