Advertisement

Conservation Genetics

, Volume 18, Issue 5, pp 1047–1060 | Cite as

Comparative population genetics of two dominant plant species of high Andean wetlands reveals complex evolutionary histories and conservation perspectives in Chile’s Norte Chico

  • Alejandra J. Troncoso
  • Angéline Bertin
  • Rodomiro Osorio
  • Gina Arancio
  • Nicolas GouinEmail author
Research Article

Abstract

High Andean wetlands are naturally fragmented ecosystems that are impacted by anthropogenic activities. Although they constitute important reservoirs of biodiversity and ecosystem service providers, many aspects of their ecology are still unknown. In this study, we investigated the population genetic structure of two dominant and highly interactive plant species of high altitude wetlands, Patosia clandestina (Juncaceae) and Carex gayana (Cyperaceae), in 21 high Andean wetlands of Chile’s Norte Chico. Using rbcL gene sequences and AFLP markers, we found that both species displayed low levels of within-wetland genetic diversity, high inter-population genetic differentiation, and spatially-dependent genetic variation arising from isolation-by-distance. The distance at which populations become genetically independent was of the same order of magnitude in both species (125–175 km). Despite these similarities, idiosyncratic spatial patterns were detected. C. gayana in the three most northeastern wetlands demonstrated marked differences relative to the rest of the populations, with the latter group following a latitudinal stepping-stone pattern. In P. clandestina, a genetic barrier was found to divide the northern and southern populations into two balanced groups, and spatial genetic variation was consistent with a hierarchical island model. The data indicate that each of the two species likely responded to different geological and ecological events, resulting in the definition of unique evolutionarily significant units in both. These results suggest that the implementation of global conservation programs at regional scales would likely result in the loss of important components of biodiversity in these ecosystems, and underscore the need for caution in designing effective conservation strategies.

Keywords

AFLP Carex gayana Genetic diversity Patosia clandestina Population differentiation Evolutionarily significant units 

Notes

Acknowledgements

The authors wish to thank Evelyn Alvarez for her help with field sampling, and Rasme Hereme and Leonardo Cifuentes for their technical assistance in the molecular work. We are also thankful to A. Baumel and L. Eaton for their valuable comments on the manuscript, and to Craig Weideman for revising the English. This study was supported by FONDECYT Regular Research Grant 1110514, FONDECYT Postdoctoral Grant 3130761, and ECOS/CONICYT Grant C12B02.

Supplementary material

10592_2017_957_MOESM1_ESM.doc (2.7 mb)
Supplementary material 1 (DOC 2767 KB)

References

  1. Aguilar R, Ashworth L, Galetto L et al (2006) Plant reproductive susceptibility to habitat fragmentation: a review and synthesis through a meta-analysis. Ecol Lett 9:968–980CrossRefPubMedGoogle Scholar
  2. Alvial I, Tapia DH, Castro MJ, Durán BC, Verdugo CA (2012) Analysis of benthic macroinvertebrates and biotic indices to evaluate water quality in rivers impacted by mining activities in northern Chile. Knowl Manag Aquat Ecosyst 407:01CrossRefGoogle Scholar
  3. Alvial I, Orth K, Durán BC, Álvarez E, Squeo FA (2013) Importance of geochemical factors in determining distribution patterns of aquatic invertebrates in mountain streams south of the Atacama Desert, Chile. Hydrobiologia 709:11–25CrossRefGoogle Scholar
  4. Avise JC (2000) Phylogeography: the history and formation of species. Harvard University Press, CambridgeGoogle Scholar
  5. Balloux F, Lehmann L, de Meeûs T (2003) The population genetics of clonal and partially clonal diploids. Genetics 164:1635–1644PubMedPubMedCentralGoogle Scholar
  6. Barros M (1953) Las Juncáceas de Argentina, Chile y Uruguay. Darwiniana 10:279–460Google Scholar
  7. Barros M, Borsini OE, Correa MN, Crespo S, Giardelli ML, Perez-Moreau RL, Ravenna PF (1969) Flora patagonica—Parte II Typhaceae a Orchidaceae. Colección Científica del INTA, Buenos Aires, p 219Google Scholar
  8. Batson WG, Gordon IJ, Fletcher DB, Manning AD (2015) Translocation tactics: a framework to support the IUCN guidelines for wildlife translocations and improve the quality of applied methods. J Appl Ecol 52:1598–1607CrossRefGoogle Scholar
  9. Beatty GE, Provan J (2012) Post-glacial dispersal, rather thanin situglacial survival, best explains the disjunct distribution of the Lusitanian plant species Daboecia cantabrica (Ericaceae). J Biogeogr 40:335–344CrossRefGoogle Scholar
  10. Bernard JM (1990) Life history and vegetative reproduction in Carex. Can J Bot 68:1441–1448CrossRefGoogle Scholar
  11. Bertin A, Alvarez E, Gouin N et al (2015) Effects of wind-driven spatial structure and environmental heterogeneity on high-altitude wetland macroinvertebrate assemblages with contrasting dispersal modes. Freshwater Biol 60:297–310CrossRefGoogle Scholar
  12. Bertin A, Gouin N, Baumel A, Gianoli E, Serratosa J, Osorio R, Manel S (2017) Genetic variation of loci potentially under selection confounds species-genetic diversity correlations in a fragmented habitat. Mol Ecol 26:431–443CrossRefPubMedGoogle Scholar
  13. Boisier JP, Rondanelli R, Garreaud RD, Muñoz F (2015) Anthropogenic and natural contributions to the Southeast Pacific precipitation decline and recent megadrought in central Chile. Geophys Res Lett 43. doi: 10.1002/2015GL067265
  14. Bonin A, Ehrlich D, Manel S (2007) Statistical analysis of amplified fragment length polymorphism data: a toolbox for molecular ecologists and evolutionists. Mol Ecol 16:3737–3758CrossRefPubMedGoogle Scholar
  15. Bonino N, Borelli L (2006) Variación estacional en la dieta del conejo silvestre europeo (Oryctolagus cuniculus) en la región andina de Neuquén, Argentina. Austral Ecol 16:7–13Google Scholar
  16. Bruederle LP, Yarbrough SL, Fehlberg SD 2008 Allozyme variation in the Genus Carex… l5 years later: 1986–2001. In: Naczi RFC, Ford BA (eds) Sedges: Uses, Diversity, and Systematics of the Cyperaceae, vol. 8. Monographs in Systematic Botany from the Missouri Botanical Garden, St Louis, pp 187–196Google Scholar
  17. Caballero A, Quesada H, Rolán-Alvarez E (2008) Impact of amplified fragment length polymorphism size homoplasy on the estimation of population genetic diversity and the detection of selective loci. Genetics 179:539–554CrossRefPubMedPubMedCentralGoogle Scholar
  18. Clapperton CM (1979) Glaciation in Bolivia before 3.27 Myr. Nature 277:375–376CrossRefGoogle Scholar
  19. Cota-Sánchez JH, Remarchuk K, Ubayasena K (2006) Ready-to-Use DNA extracted with a CTAB method adapted for herbarium specimens and mucilaginous plant tissue. Plant Mol Biol Rep 24:161–167CrossRefGoogle Scholar
  20. Crandall KA, Bininda-Emonds ORP, Mace GM et al (2000) Considering evolutionary processes in conservation biology. Trends Ecol Evol 15:290–295CrossRefPubMedGoogle Scholar
  21. Dantas LG, Esposito T, de Sousa ACB et al (2015) Low genetic diversity and high differentiation among relict populations of the neotropical gymnosperm Podocarpus sellowii (Klotz.) in the Atlantic Forest. Genetica 143:21–30CrossRefPubMedGoogle Scholar
  22. Deil U (2005) A review on habitats, plant traits and vegetation of ephemeral wetlands—a global perspective. Phytocoenologia 35:533–705CrossRefGoogle Scholar
  23. Diniz-Filho JAF, De Campos Telles MP (2002) Spatial autocorrelation analysis and the identification of operational units for conservation in continuous populations. Conserv Biol 16:924–935CrossRefGoogle Scholar
  24. Duchesne P, Bernatchez I (2002) AFLPOP: A computer program for simulated and real population allocation based on AFLP data. Mol Ecol Notes 3:380–383CrossRefGoogle Scholar
  25. Dunning LT, Savolainen V (2010) Broad-scale amplification ofmatKfor DNA barcoding plants, a technical note. Bot J Linn Soc 164:1–9CrossRefGoogle Scholar
  26. Earl DA, vonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361CrossRefGoogle Scholar
  27. Elger K, Oncken O, Glodny J (2005) Plateau-style accumulation of deformation: Southern Altiplano. Tectonics 24:TC4020CrossRefGoogle Scholar
  28. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620CrossRefPubMedGoogle Scholar
  29. Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567CrossRefPubMedGoogle Scholar
  30. Fay MF, Swensen SM, Chase MW (1997) Taxonomic affinities of Medusagyne oppositifolia (Medusagynaceae). Kew Bull 52:111–120CrossRefGoogle Scholar
  31. Frankham R, Ballou JD, Briscoe DA (2010) Introduction to Conservation Genetics. 2nd edn. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  32. GBIF Secretariat: GBIF Backbone Taxonomy (2013) Available via http://www.gbif.org/dataset/d7dddbf4-2cf0-4f39-9b2a-bb099caae36c. Accessed 02 Dec 2014
  33. Guillot G, Leblois R, Coulon A et al (2009) Statistical methods in spatial genetics. Mol Ecol 18:4734–4756CrossRefPubMedGoogle Scholar
  34. Hamrick JL, Godt MJW (1996) Effects of life history traits on genetic diversity in plant species. Philos Trans R Soc B 351:1291–1298.CrossRefGoogle Scholar
  35. Haye PA, Segovia NI, Muñoz-Herrera NC et al (2014) Phylogeographic structure in benthic marine invertebrates of the Southeast Pacific Coast of Chile with differing dispersal potential. PLoS One 9:e88613CrossRefPubMedPubMedCentralGoogle Scholar
  36. Hechem V, Acheritobehere L, Morrone JJ (2011) Patrones de distribución de las especies de Cynanchum, Diplolepis y Tweedia (Apocynaceae: Asclepiadoideae)de América del Sur austral. Rev Geogr Norte Gd 48:45–60CrossRefGoogle Scholar
  37. Hedrick PW, Kalinowski ST (2000) Inbreeding depression in Conservation Biology. Annu Rev Ecol Syst 31:139–162CrossRefGoogle Scholar
  38. Herrmann D, Poncet BN, Manel S et al (2010) Selection criteria for scoring amplified fragment length polymorphisms (AFLPs) positively affect the reliability of population genetic parameter estimates. Genome 53:302–310CrossRefPubMedGoogle Scholar
  39. Hewitt G (2000) The genetic legacy of the quaternary ice ages. Nature 405:907–913CrossRefPubMedGoogle Scholar
  40. Hijmans RJ, Cameron SE, Parra JL et al (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978CrossRefGoogle Scholar
  41. Ibáñez I, Katz DSW, Peltier D et al (2014) Assessing the integrated effects of landscape fragmentation on plants and plant communities: the challenge of multiprocess-multiresponse dynamics. J Ecol 102:882–895CrossRefGoogle Scholar
  42. Isbell F, Calcagno V, Hector A, Connolly J, Harpole W, Reich PB, Scherer-Lorenzen M, Schmid B, Tilman D, van Ruijven J, Weigelt A, Wilsey BJ, Zavaleta ES, Loreau M (2011) High plant diversity is needed to maintain ecosystem services. Nature 477:199–202CrossRefPubMedGoogle Scholar
  43. Jombart T (2008) adegenet: a R package for the multivariate analysis of the genetic markers. Bioinformatics 24:1403–1405CrossRefPubMedGoogle Scholar
  44. Jombart T, Devillard S, Balloux F (2010) Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet 11:94CrossRefPubMedPubMedCentralGoogle Scholar
  45. Jump AS, Peñuelas J (2006) Genetic effects of chronic habitat fragmentation in a wind-pollinated tree. Proc Natl Acad Sci Biol 103:8096–8100CrossRefGoogle Scholar
  46. Junk WJ (2013) Current state of knowledge regarding South America wetlands and their future under global climate change. Aquat Sci 75:113–131CrossRefGoogle Scholar
  47. Kiesling R (2009) Flora de San Juan, República Argentina, Volumen IV: Monocotiledóneas. Missouri Botanical Garden Press, St. LouisGoogle Scholar
  48. Körner C (1999) Alpine Plant Life: functional plant ecology of high mountain ecosystems. Springer-Verlag, BerlinCrossRefGoogle Scholar
  49. Kuss P, Pluess AR, Aegisdóttir HH et al (2008) Spatial isolation and genetic differentiation in naturally fragmented plant populations of the Swiss Alps. J Plant Ecol 1:149–159CrossRefGoogle Scholar
  50. Lewontin RC (1972) The apportionment of human diversity. Evol Biol 6:381–398Google Scholar
  51. Librado P, Rozas J (2009) DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452CrossRefPubMedGoogle Scholar
  52. Liepelt S, Bialozyt R, Ziegenhagen B (2002) Wind-dispersed pollen mediates postglacial gene flow among refugia. Proc Natl Acad Sci Biol 99:14590–14594CrossRefGoogle Scholar
  53. Maldonado A, Betancourt JL, Latorre C et al (2005) Pollen analyses from a 50000-yr rodent midden series in the southern Atacama Desert (25°30′S). J Quat Sci 20:493–507CrossRefGoogle Scholar
  54. Maldonado A, Rozas E (2008) Clima y paleoambientes durante el cuaterno tardío en la región de Atacama. In: Squeo FA, Arancio G, Gutiérrez JR (eds) Libro Rojo de la Flora Nativa y de los Sitios Prioritarios para su Conservación: Región de Coquimbo. Ediciones Universidad de la Serena, La Serena, pp 293–304Google Scholar
  55. Manel S, Schwartz ML, Luikhart G et al (2003) Landscape genetics: combining landscape ecology and population genetics. Trends Ecol Evol 18:189–197CrossRefGoogle Scholar
  56. Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220PubMedGoogle Scholar
  57. Meirmans P, Goudet J, IntraBioDiv Consortium, Gaggiotti OE (2011) Ecology and life history affect different aspects of the population structure of 27 high-alpine plants. Mol Ecol 20:3144–3155CrossRefPubMedGoogle Scholar
  58. Meloni M, Reid A, Caujapé-Castells J et al (2013) Effect of clonality on the genetic variability of rare, insular species: the case of Ruta microcarpa from the Canary Islands. Ecol Evol 3:1569–1579CrossRefPubMedPubMedCentralGoogle Scholar
  59. Messerli B, Grosjean M, Bonani G et al (1993) Climate change and natural resource dynamics of the Atacama altiplano during the last 18,000 years: a preliminary synthesis. Mt Res Dev 13:117–127CrossRefGoogle Scholar
  60. Meudt HM, Clarke AC (2007) Almost forgotten or latest practice? AFLP applications, analyses and advances. Trends Plant Sci 12:106–117CrossRefPubMedGoogle Scholar
  61. Millar MA, Coates DJ, Byrne M (2014) Extensive long-distance pollen dispersal and highly outcrossed mating in historically small and disjunct populations ofAcacia woodmaniorum(Fabaceae), a rare banded iron formation endemic. Ann Bot 114:961–971CrossRefPubMedPubMedCentralGoogle Scholar
  62. Miller MP (2005) Alleles in space (AIS): computer software for the joint analysis of interindividual spatial and genetic information. J Hered 96:722–724CrossRefPubMedGoogle Scholar
  63. Möller P, Muñoz-Pedreros A (2014) Assessment of the legal protection of various types of inland wetlands of Chile. Rev Chil Hist Nat 87:1–13CrossRefGoogle Scholar
  64. Montecinos A, Broitman BR, Faugeron S et al (2012) Species replacement along a linear coastal habitat: phylogeography and speciation in the red algaMazzaella laminarioidesalong the southeast pacific. BMC Evol Biol 12:97CrossRefPubMedPubMedCentralGoogle Scholar
  65. Moritz C (1994) Defining “evolutionarily significant units” for conservation. Trends Ecol Evol 9:373–375CrossRefPubMedGoogle Scholar
  66. Nei M (1973) Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci USA 70:3321–3323CrossRefPubMedPubMedCentralGoogle Scholar
  67. Nei M, Kumar S (2000) Molecular Evolution and Phylogenetics. Oxford University Press, OxfordGoogle Scholar
  68. Nybom H (2004) Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants. Mol Ecol 13:1143–1155CrossRefPubMedGoogle Scholar
  69. Oyarzún J, Maturana H, Paulo A, Pasiecna A (2003) Heavy metals in stream sediments from the Coquimbo Region (Chile): effects of sustained mining and natural processes in a semi-arid Andean basin. Mine Water Environ 22:155–161CrossRefGoogle Scholar
  70. Oyarzún J, Oyarzún R (2011) Sustainable development threats, inter-sector conflicts and environmental policy requirements in the arid, mining rich, northern Chile territory. Sustain Dev 19:263–274CrossRefGoogle Scholar
  71. Paradis E, Claude J, Strimmer K (2004) APE: analysis of phylogenetics and evolution in R language. Bioinformatics 20:289–290CrossRefPubMedGoogle Scholar
  72. Parra A, Oyarzún J, Maturana H, Kretschmer N, Meza F, Oyarzún R (2011) Natural and mining activity bearings on the water quality of the Choapa basin, North Central Chile: insights on the role of mafic volcanic rocks in the buffering of the acid drainage process. Environ Monit Assess 181:69–82CrossRefPubMedGoogle Scholar
  73. Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28:2537–2539CrossRefPubMedPubMedCentralGoogle Scholar
  74. Pizarro J, Vergara P, Rodriguez J, Valenzuela A (2010) Heavy metals in northern Chilean rivers: spatial variation and temporal trends. J Hazard Mater 181:747–754CrossRefPubMedGoogle Scholar
  75. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedPubMedCentralGoogle Scholar
  76. R Core Team (2014) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. ISBN 3-900051-07. http://www.R-project.org/
  77. Reisch C, Bernhardt-Römermann M (2014) The impact of study design and life history traits on genetic variation of plants determined with AFLPs. Plant Ecol 215:1493–1511CrossRefGoogle Scholar
  78. Romand-Monnier F (2013) Carex gayana. The IUCN Red List of Threatened Species 2013: e.T44392960A44505952. doi: 10.2305/IUCN.UK.20132.RLTS.T44392960A44505952.en. Downloaded on 16 Jan 2017.
  79. Roque N (2015) Consecuencias del pastoreo sobre la vegetación y el flujo del CO2 de humedales altoandinos en las provincias de Huasco y Elqui, Chile. Msc. Tesis. Universidad de La Serena.Google Scholar
  80. Rundel PW, Palma B (2000) Preserving the unique puna ecosystems of the Andean Altiplano. Mt Res Dev 20:262–271CrossRefGoogle Scholar
  81. Ruthsatz B (1993) Flora und ökologische Bedingungen hochandiner Moore Chiles zwischen 18°00′ (Arica) und 40°30′ (Osorno) südl.Br. Phytocoenologia 23:157–199CrossRefGoogle Scholar
  82. Ruthsatz B (2000) Die Hartpolstermoore der Hochanden und ihre Artenvielfalt. Ber D Reinh. Tüxen-Ges 12:351–371Google Scholar
  83. Rutllant J, Fuenzalida H (1991) Synoptic aspects of central rainfall variability associated with the Southern Oscillation. Int J Climatol 11:63–76CrossRefGoogle Scholar
  84. Soulé ME, Estes JAS, Berger J et al (2003) Ecological effectiveness: conservation goals for interactive species. Conserv Biol 17:1238–1250CrossRefGoogle Scholar
  85. Squeo FA, Osorio R, Arancio G (1994) Flora de Los Andes de Coquimbo: Cordillera de Doña Ana. Ediciones Universidad de La Serena, La SerenaGoogle Scholar
  86. Squeo FA, Arancio G, Cavieres L et al (2001) Análisis del Estado de Conservación de la Flora Nativa de la IV Región de Coquimbo. In: Squeo FA, Arancio G, Gutiérrez JR (eds) Libro Rojo de la Flora Nativa y de los Sitios Prioritarios para su Conservación: Región de Coquimbo. Ediciones Universidad de la Serena, La Serena, pp 53–62Google Scholar
  87. Squeo FA, Warner BG, Aravena R et al (2006) Bofedales: high altitude peatlands of the central Andes. Rev Chil Hist Nat 79:245–255CrossRefGoogle Scholar
  88. Starr JR, Naczi RFC, Chouinard BN (2009) Plant DNA barcodes and species resolution in sedges (Carex, Cyperaceae). Mol Ecol Resour 9:151–163CrossRefPubMedGoogle Scholar
  89. Stöcklin J, Kuss P, Pluess AR (2009) Genetic diversity, phenotypic variation and local adaptation in the alpine landscape: case studies with alpine plant species. Bot Helv 119:125–133CrossRefGoogle Scholar
  90. Tamura K, Stecher G, Peterson D et al (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729CrossRefPubMedPubMedCentralGoogle Scholar
  91. Thiel-Egenter C, Alvarez N, Holderegger R et al (2011) Break zones in the distributions of alleles and species in alpine plants. J Biogeogr 38:772–782CrossRefGoogle Scholar
  92. Turchetto-Zolet AC, Pinheiro F, Salgueiro F et al (2013) Phylogeographical patterns shed light on evolutionary process in South America. Mol Ecol 22:1193–1213CrossRefPubMedGoogle Scholar
  93. Van Groenendael JM, Klimes L, Klimesova J et al (1996) Comparative Ecology of Clonal Plants. Philos Trans R Soc B 351:1331–1339CrossRefGoogle Scholar
  94. Van der Pijl L (1982) Principles of dispersal in higher plants. Springer-Verlag, BerlinCrossRefGoogle Scholar
  95. Wang X, Li Y, Liang Q et al (2015) Contrasting responses to Pleistocene climate changes: a case study of two sister species Allium cyathophorum and A. spicata (Amaryllidaceae) distributed in the eastern and western Qinghai-Tibet Plateau. Ecol Evol 5:1513–1524CrossRefPubMedPubMedCentralGoogle Scholar
  96. Wilson KL, Berendsohn WG (2017) IOPI Global Plant Checklist (version 10.0, Aug 2007). In: Roskov Y, Abucay L, Orrell T et al (eds) Species 2000 & ITIS Catalogue of Life, 23rd December 2016. Digital resource at http://www.catalogueoflife.org/col. Species 2000: Naturalis, Leiden
  97. Woodruff DS (2001) Populations, species, and conservation genetics. In: Levins S (ed) Encyclopedia of biodiversity, vol 4. Academic Press, San Diego, pp 811–829CrossRefGoogle Scholar
  98. Yeh FC, Boyle TJB (1997) Population genetic analysis of co-dominant and dominant markers and quantitative traits. Belg J Bot 129:157Google Scholar
  99. Zech R, Kull C, Kubik PW, Veit H (2007) Exposure dating of Late Glacial and pre-LGM moraines in the Cordon de Doña Rosa, Northern/Central Chile (~31°S). Clim Past 3:1–14CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Alejandra J. Troncoso
    • 1
  • Angéline Bertin
    • 1
  • Rodomiro Osorio
    • 1
  • Gina Arancio
    • 1
  • Nicolas Gouin
    • 1
    • 2
    • 3
    Email author
  1. 1.Departamento de BiologíaUniversidad de La SerenaLa SerenaChile
  2. 2.Instituto de Investigación Multidisciplinar en Ciencia y TecnologíaUniversidad de La SerenaLa SerenaChile
  3. 3.Centro de Estudios Avanzados en Zonas ÁridasLa SerenaChile

Personalised recommendations