Conservation Genetics

, Volume 18, Issue 4, pp 853–866 | Cite as

Spatial genetic structure of Lissotriton helveticus L. following the restoration of a forest ponds network

  • Francis Isselin-Nondedeu
  • Audrey Trochet
  • Thomas Joubin
  • Damien Picard
  • Roselyne Etienne
  • Hugo Le Chevalier
  • Delphine Legrand
  • Alexandre Ribéron
Research Article


Preserving amphibian genetic diversity through ecological restoration and conservation actions is a major challenge since their populations are declining worldwide. We studied the genetic diversity and spatial genetic structure of the palmate newt (Lissotriton helveticus) 2 years after the restoration of a pond network in northwestern France with the aim of reconstructing fine-scale genetic structure and patterns of colonization. We sampled newts from 29 forest ponds including both restored and non-degraded reference ponds, and genotyped 391 individuals at 12 microsatellite loci. We used two Bayesian clustering methods to spatially delineate genetic clusters, and we also detected potential recent migrants within the network. All ponds showed low levels of observed heterozygosity (Ho = 0.534) and a mean F IS of 0.251, possibly indicating a Wahlund or bottleneck effect. Pairwise F ST suggested limited evidence of genetic differentiation among ponds. Within the pond network, we identified 3 to 4 genetic clusters. Combined with the detection of migrants, the results suggest an increase in gene flow within the restored pond network and that a high number of migrants came from the reference ponds. Our findings indicate an unexpected high dispersal ability for this small-bodied species. Overall, the absence of population structure represents a positive beginning for the restoration project. It also emphasizes the importance of spatial design in restoring a pond network and that such genetic data and methods should be used to monitor amphibians in restored habitats.


Genetic structure Palmate newt Gene flow Vernal pools Microsatellites Ecological restoration Amphibian conservation 



We thank all the students and field assistants who worked night and day. We are very grateful to Gilbert Pagé (Office National des Forêts Centre Val de Loire) the Herpetological society (Société Herpétologique de Touraine) and the National Forest Office for its collaboration and support. This project was granted by the French Minister of Ecology and Sustainable Development under the National Strategy for Biodiversity, and was supported by the EPL (établissement public Loire), the ERDF (european regional development fund), the AELB (agence de l’eau Loire-Bretagne), the ONF (Office National des Forêts Centre Val de Loire), and the Fondation de France grant, and was conducted under permits granted from the French authority services. We are grateful to Radika Michniewicz (CNRS Moulis) for her comments and improvement of English. We extend our thanks to the anonymous reviewers whose comments and remarks greatly helped to improve the manuscript.

Authors’ contributions

FIN, AT, AR conceived the project, designed the experiment, participated in the sampling, performed the analysis and co-wrote; TJ, RE, HLC sampled and performed the genetic analysis, DP, SB, DL were involved in the project, collaborated on the paper and the genetic analysis.

Supplementary material

10592_2017_932_MOESM1_ESM.docx (20 kb)
Supplementary material 1 (DOCX 19 KB)
10592_2017_932_MOESM2_ESM.docx (14 kb)
Supplementary material 2 (DOCX 14 KB)
10592_2017_932_MOESM3_ESM.docx (14 kb)
Supplementary material 3 (DOCX 14 KB)
10592_2017_932_MOESM4_ESM.docx (12 kb)
Supplementary material 4 (DOCX 12 KB)
10592_2017_932_MOESM5_ESM.docx (14 kb)
Supplementary material 5 (DOCX 13 KB)
10592_2017_932_MOESM6_ESM.docx (22 kb)
Supplementary material 6 (DOCX 21 KB)
10592_2017_932_MOESM7_ESM.docx (49 kb)
Supplementary material 7 (DOCX 48 KB)


  1. Alexandrino J, Froufe E, Arntzen JW, Ferrand N (2000) Genetic subdivision, glacial refugia and postglacial recolonization in the golden-striped salamander, Chioglossa lusitanica (Amphibia: Urodela). Mol Ecol 9:771–781. doi: 10.1046/j.1365-294x.2000.00931.x CrossRefPubMedGoogle Scholar
  2. Allentoft ME, O’Brien J (2010) Global amphibian declines, loss of genetic diversity and fitness: a review. Diversity 2:47–71CrossRefGoogle Scholar
  3. Andersen LW, Fog K, Damgaard C (2004) Habitat fragmentation causes bottlenecks and inbreeding in the European tree frog (Hyla arborea). Proc Royal Soc Bio Sciences 271:1293–1302. doi: 10.1098/rspb.2004.2720 CrossRefGoogle Scholar
  4. Apodaca JJ, Rissler LJ, Godwin JC (2012) Population structure and gene flow in a heavily disturbed habitat: implications for the management of the imperilled Red Hills salamander (Phaeognathus hubrichti). Conserv Genet 13:913–923. doi: 10.1007/s10592-012-0340-3 CrossRefGoogle Scholar
  5. Arruda MP, Morielle-Versute E, Silva A, Schneider MPC,, Goncalves EC (2011) Contemporary gene flow and weak genetic structuring in Rococo toad (Rhinella schneideri) populations in habitats fragmented by agricultural activities. Amphi Reptil 32:399–411. doi: 10.1163/017353711x588182 CrossRefGoogle Scholar
  6. Cabe PR, Page RB, Hanlon TJ, Aldrich ME, Connors L, Marsh DM (2007) Fine-scale population differentiation and gene flow in a terrestrial salamander (Plethodon cinereus) living in continuous habitat. Heredity 98:53–60. doi: 10.1038/sj.hdy.6800905 CrossRefPubMedGoogle Scholar
  7. Chapuis MP, Estoup A (2007) Microsatellite null alleles and estimation of population differentiation. Mol Biol Evol 24:621–631. doi: 10.1093/molbev/msl191 CrossRefPubMedGoogle Scholar
  8. Cornuet JM, Piry S, Luikart G, Estoup A, Solignac M (1999) New methods employing multilocus genotypes to select or exclude populations as origins of individuals. Genetics 153:1989–2000PubMedPubMedCentralGoogle Scholar
  9. Couderc JM (1979) Observations sur les mardelles de Touraine. Norois 101:29–46CrossRefGoogle Scholar
  10. Cushman SA (2006) Effects of habitat loss and fragmentation on amphibians: A review and prospectus. Biol Conserv 128:231–240. doi: 10.1016/j.biocon.2005.09.031 CrossRefGoogle Scholar
  11. Dakin EE, Avise JC (2004) Microsatellite null alleles in parentage analysis. Heredity 93:504–509. doi: 10.1038/sj.hdy.6800545 CrossRefPubMedGoogle Scholar
  12. Denoël M (1999) Le comportement social des urodèles (Social behavior of Urodels). Cahiers d’Ethologie 19:221–258Google Scholar
  13. Denoël M, Ficetola GF (2007) Landscape-level thresholds and newt conservation. Ecol Appl 17:302–309CrossRefPubMedGoogle Scholar
  14. Dixo M, Metzger JP, Morgante JS, Zamudio KR (2009) Habitat fragmentation reduces genetic diversity and connectivity among toad populations in the Brazilian Atlantic Coastal Forest. Biol Conserv 142:1560–1569. doi: 10.1016/j.biocon.2008.11.016 CrossRefGoogle Scholar
  15. Drechsler A, Bock D, Ortmann D, Steinfartz S (2010) Ortmann’s funnel trap—a highly efficient tool for monitoring amphibian specie. Herpetol Notes 3:13–21Google Scholar
  16. Drechsler A et al (2013) What remains from a 454 run: estimation of success rates of microsatellite loci development in selected newt species (Calotriton asper, Lissotriton helveticus, and Triturus cristatus) and comparison with Illumina-based approaches. Ecol Evol 3:3947–3957. doi: 10.1002/ece3.764 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Earl DA, vonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Res 4:359–361. doi: 10.1007/s12686-011-9548-7 CrossRefGoogle Scholar
  18. Emel SL, Storfer A (2012) A decade of amphibian population genetic studies: synthesis and recommendations. Conserv Genet 13:1685–1689. doi: 10.1007/s10592-012-0407-1 CrossRefGoogle Scholar
  19. Emel SL, Storfer A (2015) Landscape genetics and genetic structure of the southern torrent salamander, Rhyacotriton variegatus. Conserv Genet 16:209–221. doi: 10.1007/s10592-014-0653-5 CrossRefGoogle Scholar
  20. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620. doi: 10.1111/j.1365-294X.2005.02553.x CrossRefPubMedGoogle Scholar
  21. Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Annu Rev Ecol Syst 34:487–515. doi: 10.1146/annurev.ecolsys.34.011802.132419 CrossRefGoogle Scholar
  22. Francois O, Durand E (2010) Spatially explicit Bayesian clustering models in population genetics. Mol Ecol Resour 10:773–784. doi: 10.1111/j.1755-0998.2010.02868.x CrossRefPubMedGoogle Scholar
  23. Frankham R (1996) Relationship of genetic variation to population size in wildlife. Conserv Biol 10:1500–1508. doi: 10.1046/j.1523-1739.1996.10061500.x CrossRefGoogle Scholar
  24. Frankham R, Ballou JD, Briscoe DA (2002) Introduction to Conservation genetics. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  25. Frankham R, Briscoe DA, Balbou JD (2010) Introduction to conservation genetics. 2 edn. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  26. Gabor CR, Halliday TR (1997) Sequential mate choice by multiply mating smooth newts: females become more choosy. Behavior Ecol 8:162–166. doi: 10.1093/beheco/8.2.162 CrossRefGoogle Scholar
  27. Gilpin EM, Soulé ME (1986) Minimum viable populations: processes of species extinction. In: Sinauer (ed) Conservation biology: the science of scarcity and diversity. Massachussets, Sunderland, pp 19–34Google Scholar
  28. Gomez-Mestre I, Tejedo M (2004) Contrasting patterns of quantitative and neutral genetic variation in locally adapted populations of the natterjack toad, Bufo calamita. Evol Int J org Evol 58:2343–2352CrossRefGoogle Scholar
  29. Goudet J (1995) FSTAT: a computer program to calculate F-statistics. J Hered 86:485–486CrossRefGoogle Scholar
  30. Goudet J (2001) F STAT: a program to estimate and test gene diversities and fixation indices vol Updtated from Goudet 1995, 2.9.3 edn, Pearson/Prentice Hall, New JerseyGoogle Scholar
  31. Gray MJ, Smith LM, Brenes R (2004) Effects of agricultural cultivation on demographics of southern high plains amphibians. Conserv Biol 18:1368–1377CrossRefGoogle Scholar
  32. Griffiths RA (1996) Newts and salamanders of Europe. Academic Press (Poyser Natural History), Calton, p 188Google Scholar
  33. Guillot G, Mortier F, Estoup A (2005) Geneland: a computer package for landscape genetics. Mol Ecol Notes 5:712–715. doi: 10.1111/j.1471-8286.2005.01031.x CrossRefGoogle Scholar
  34. Gvozdik L, Van Damme R (2006) Triturus newts defy the running-swimming dilemma. Evolution Int J org Evolution 60:2110–2121CrossRefGoogle Scholar
  35. Hapke A, Zinner D, Zischler H (2001) Mitochondrial DNA variation in Eritrean hamadryas baboons (Papio hamadryas hamadryas): life history influences population genetic structure. Behav Ecol Sociobio 50:483–492. doi: 10.1007/s002650100393 CrossRefGoogle Scholar
  36. Hedrick P (2005) ‘Genetic restoration’: a more comprehensive perspective than ‘genetic rescue’. Trends Ecol Evol 20:109–109. doi: 10.1016/j.tree.2005.01.006 CrossRefPubMedGoogle Scholar
  37. Holderegger R, Di Giulio M (2010) The genetic effects of roads: A review of empirical evidence. Basic Appl Ecol 11:522–531. doi: 10.1016/j.baae.2010.06.006 CrossRefGoogle Scholar
  38. IUCN (2013) IUCN red list of threatened species Version 2013.2. IUCN, www document URL
  39. Jackson ND, Fahrig L (2011) Relative effects of road mortality and decreased connectivity on population genetic diversity. Biol Conserv 144:3143–3148. doi: 10.1016/j.biocon.2011.09.010 CrossRefGoogle Scholar
  40. Johanet A (2010) Flux de gènes inter et intra-spécifiques chez des espèces des vallées alluviales: cas des tritons palmés et ponctués en vallée de la Loire (PhD Thesis, tel-00477761). Angers, pp 151–186Google Scholar
  41. Johanet A et al (2009) Characterization of microsatellite loci in two closely related Lissotriton newt species. Conserv Genet 10:1903–1906. doi: 10.1007/s10592-009-9850-z CrossRefGoogle Scholar
  42. Johansson M, Primmer CR, Sahlsten J, Merila J (2005) The influence of landscape structure on occurrence, abundance and genetic diversity of the common frog, Rana temporaria. Global Chang Biol 11:1664–1679. doi: 10.1111/j.1365-2486.2005.01005.x CrossRefGoogle Scholar
  43. Joly P, Miaud C (1989) Fidelity to the breeding site in the Alpine newt Triturus alpestris. Behav Process 19:47–56. doi: 10.1016/0376-6357(89)90030-2 CrossRefGoogle Scholar
  44. Joly P, Miaud C, Lehmann A, Grolet O (2001a) Habitat matrix effects on pond occupancy in newts. Conserv Biol 15:239–248CrossRefGoogle Scholar
  45. Joly P, Miaud C, Lehmann A, Grolet O (2001b) Habitat matrix effects on pond occupancy in newts. Conserv Biol 15:239–248CrossRefGoogle Scholar
  46. Kovar R, Brabec M, Radovan V, Radomir B (2009) Spring migration distances of some Central European amphibian species. Amphi Reptil 30:367–378CrossRefGoogle Scholar
  47. Le Lay G, Angelone S, Holderegger R, Flory C, Bolliger J (2015) Increasing pond density to maintain a patchy habitat network of the European Treefrog (Hyla arborea). J Herpetol 49(2):217–221CrossRefGoogle Scholar
  48. Leblois R, Rousset F, Tikel D, Moritz C, Estoup A (2000) Absence of evidence for isolation by distance in an expanding cane toad (Bufo marinus) population: an individual-based analysis of microsatellite genotypes. Mol Ecol 9:1905–1909. doi: 10.1046/j.1365-294x.2000.01091.x CrossRefPubMedGoogle Scholar
  49. Lesbarreres D, Pagano A, Lode T (2003) Inbreeding and road effect zone in a Ranidae: the case of Agile frog, Rana dalmatina Bonaparte, 1840. C R Biol 326:S68–S72. doi: 10.1016/s1631-0691(03)00040-4 CrossRefPubMedGoogle Scholar
  50. Maletzky A, Kaiser R, Mikulíček P (2010) Conservation genetics of crested newt species Triturus cristatus and T. carnifex within a contact zone in Central Europe: impact of interspecific introgression and gene flow. Diversity 2:28CrossRefGoogle Scholar
  51. Marsh DM, Milam GS, Gorham NR, Beckman NG (2005) Forest roads as partial barriers to terrestrial salamander movement. Conserv Biol 19:2004–2008. doi: 10.1111/j.1523-1739.2005.00238.x CrossRefGoogle Scholar
  52. Marsh DM et al. (2007) Ecological and genetic evidence that low-order streams inhibit dispersal by red-backed salamanders (Plethodon cinereus). Can J Bot 85:319–327. doi: 10.1139/z07-008 Google Scholar
  53. McKay JK, Christian CE, Harrison S, Rice KJ (2005) How local is local?”—A review of practical and conceptual issues in the genetics of restoration. Rest Ecol 13:432–440 doi: 10.1111/j.1526-100X.2005.00058.x CrossRefGoogle Scholar
  54. McRae BH, Hall SA, Beier P, Theobald DM (2012) Where to restore ecological connectivity? detecting barriers and quantifying restoration benefits. PLoS ONE 7:e52604CrossRefPubMedPubMedCentralGoogle Scholar
  55. Meirmans PG (2015) Seven common mistakes in population genetics and how to avoid them. Mol Ecol 24:3223–3231. doi: 10.1111/mec.13243 CrossRefPubMedGoogle Scholar
  56. Mijangos JL, Pacioni C, Spencer PBS, Craig MD (2015) Contribution of genetics to ecological restoration. Mol Ecol 24:22–37. doi: 10.1111/mec.12995 CrossRefPubMedGoogle Scholar
  57. Mila B, Carranza S, Guillaume O, Clobert J (2010) Marked genetic structuring and extreme dispersal limitation in the Pyrenean brook newt Calotriton asper (Amphibia: Salamandridae) revealed by genome-wide AFLP but not mtDNA. Mol Ecol 19:108–120. doi: 10.1111/j.1365-294X.2009.04441.x CrossRefPubMedGoogle Scholar
  58. Mossman CA, Waser PM (1999) Genetic detection of sex-biased dispersal. Mol Ecol 8:1063–1067. doi: 10.1046/j.1365-294x.1999.00652.x CrossRefPubMedGoogle Scholar
  59. Noel S, Ouellet M, Galois P, Lapointe F-J (2007) Impact of urban fragmentation on the genetic structure of the eastern red-backed salamander. Conserv Genet 8:599–606. doi: 10.1007/s10592-006-9202-1 CrossRefGoogle Scholar
  60. Orizaola G, Brana F (2003) Oviposition behaviour and vulnerability of eggs to predation in four newt species (genus Triturus). Herpetol J 13:121–124Google Scholar
  61. Paetkau D, Calvert W, Stirling I, Strobeck C (1995) Microsatellite analysis of population structure in Canadian polar bears. Mol Ecol 4:347–354. doi: 10.1111/j.1365-294X.1995.tb00227.x CrossRefPubMedGoogle Scholar
  62. Paetkau D, Slade R, Burden M, Estoup A (2004) Genetic assignment methods for the direct, real-time estimation of migration rate: a simulation-based exploration of accuracy and power. Mol Ecol 13:55–65. doi: 10.1046/j.1365-294X.2004.02008.x CrossRefPubMedGoogle Scholar
  63. Palo JU, Schmeller DS, Merilä J, Laurila A, Primmer CR, Kuzmin SL (2004) High degree of population subdivision in a widespread amphibian. Mol Ecol 13:2631–2644CrossRefPubMedGoogle Scholar
  64. Parris KM (2006) Urban amphibian assemblages as metacommunities. J Anim Ecol 75:757–764. doi: 10.1111/j.1365-2656.2006.01096.x CrossRefPubMedGoogle Scholar
  65. Peterman WE, Anderson TL, Ousterhout BH, Drake DL, Semlitsch RD, Eggert LS (2015) Differential dispersal shapes population structure and patterns of genetic differentiation in two sympatric pond breeding salamanders. Conserv Genet 16:59–69. doi: 10.1007/s10592-014-0640-x CrossRefGoogle Scholar
  66. Pidancier N, Miquel C, Miaud C (2003) Buccal swabs as a non destructive tissue sampling method for DNA analysis in Amphibians. Herpetol J 13:175–178Google Scholar
  67. Piry S, Alapetite A, Cornuet JM, Paetkau D, Baudouin L, Estoup A (2004) GENECLASS2: a software for genetic assignment and first-generation migrant detection. J Hered 95:536–539. doi: 10.1093/jhered/esh074 CrossRefPubMedGoogle Scholar
  68. Poschadel JR, Moller D (2004) A versatile field method for tissue sampling on small reptiles and amphibians, applied to pond turtles, newts, frogs and toads. Conserv Genet 5:865–867. doi: 10.1007/s10592-004-1974-6 CrossRefGoogle Scholar
  69. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedPubMedCentralGoogle Scholar
  70. Prunier J, Kaufmann B, Léna J-P, Fenet S, Pompanon F, Joly P (2014) A 40-year-old divided highway does not prevent gene flow in the alpine newt Ichthyosaura alpestris. Conserv Genet 15:453–468. doi: 10.1007/s10592-013-0553-0 CrossRefGoogle Scholar
  71. Rannala B, Mountain JL (1997) Detecting immigration by using multilocus genotypes. PNAS America 94:9197–9201. doi: 10.1073/pnas.94.17.9197 CrossRefGoogle Scholar
  72. Rannap R, Lohmus A, Briggs L (2009) Restoring ponds for amphibians: a success story. Hydrobiologia 634:87–95. doi: 10.1007/s10750-009-9884-8 CrossRefGoogle Scholar
  73. Ray N, Lehmann A, Joly P (2002) Modeling spatial distribution of Amphibian populations: a GIS approach based on habitat matrix permeability. Biodiv Conserv 11:2143–2165CrossRefGoogle Scholar
  74. Reed DH, Frankham R (2003) Correlation between fitness and genetic diversity. Conserv Biol 17:230–237. doi: 10.1046/j.1523-1739.2003.01236.x CrossRefGoogle Scholar
  75. Richardson JL, Brady SP, Wang IJ, Spear SF (2016) Navigating the pitfalls and promise of landscape genetics. Mol Ecol 25:849–863. doi: 10.1111/mec.13527 CrossRefPubMedGoogle Scholar
  76. Rousset F (2008) GENEPOP ’ 007: a complete re-implementation of the GENEPOP software for Windows and Linux. Mol. Ecol Res 8:103–106. doi: 10.1111/j.1471-8286.2007.01931.x CrossRefGoogle Scholar
  77. Sambrook J, Russell D (2001) Molecular cloning: a laboratory manual. 3 edn. Cold Spring Harbor Laboratory Press, New YorkGoogle Scholar
  78. Sarasola-Puente V, Jose Madeira M, Gosa A, Lizana M, Gomez-Moliner B (2012) Population structure and genetic diversity of Rana dalmatina in the Iberian Peninsula. Conserv Genet 13:197–209. doi: 10.1007/s10592-011-0276-z CrossRefGoogle Scholar
  79. Schon I, Raepsaet A, Goddeeris B, Bauwens D, Mergeay J, Vanoverbeke J, Martens K (2011) High genetic diversity but limited gene flow in Flemish populations of the crested newt, Triturus cristatus. Belg J Zool 141:3–13Google Scholar
  80. S.E.R. (2004) The SER International primer on ecological restoration ( vol 2004. Society for Ecological Restoration International Science & Policy Working Group & Tucson
  81. Smith MA, Green DM (2005) Dispersal and the metapopulation paradigm in amphibian ecology and conservation: are all amphibian populations metapopulations? Ecography 28:110–128. doi: 10.1111/j.0906-7590.2005.04042.x CrossRefGoogle Scholar
  82. Sotiropoulos K, Eleftherakos K, Kalezic ML, Legakis A, Polymeni RM (2008) Genetic structure of the alpine newt, Mesotriton alpestris (Salamandridae, Caudata), in the southern limit of its distribution: Implications for conservation. Biochem Syst Ecol 36:297–311. doi: 10.1016/j.bse.2007.10.002 CrossRefGoogle Scholar
  83. Sotiropoulos K, Eleftherakos K, Tsaparis D, Kasapidis P, Giokas S, Legakis A, Kotoulas G (2013) Fine scale spatial genetic structure of two syntopic newts across a network of ponds: implications for conservation. Conserv Genet 14:385–400. doi: 10.1007/s10592-013-0452-4 CrossRefGoogle Scholar
  84. Storfer A, Mech SG, Reudink MW, Lew K (2014) Inbreeding and strong population subdivision in an endangered salamander. Conserv Genet 15:137–151. doi: 10.1007/s10592-013-0526-3 CrossRefGoogle Scholar
  85. Straub C, Pichlmueller F, Helfer V (2015) Population genetics of fire salamanders in a pre-Alpine urbanized area (Salzburg, Austria). Salamandra 51:245–251Google Scholar
  86. Templeton AR, Shaw K, Routman E, Davis SK (1990) The genetic consequences of habitat fragmentation. Annals Miss Bot Garden 77:13–27. doi: 10.2307/2399621 CrossRefGoogle Scholar
  87. Titus V, Bell R, Becker CG, Zamudio K (2014) Connectivity and gene flow among Eastern Tiger Salamander (Ambystoma tigrinum) populations in highly modified anthropogenic landscapes. Conserv Genet 15:1447–1462. doi: 10.1007/s10592-014-0629-5 CrossRefGoogle Scholar
  88. Trochet A et al (2016) Intra-specific variability of hindlimb length in the palmate newt: an indicator of population isolation induced by habitat fragmentation? Biol Letters 12. doi: 10.1098/rsbl.2016.0066
  89. Van Buskirk J (2012) Permeability of the landscape matrix between amphibian breeding sites. Ecol Evol 2:3160–3167. doi: 10.1002/ece3.424 CrossRefPubMedPubMedCentralGoogle Scholar
  90. Wahlund S (1928) Composition of populations and correlation appearances viewed in relation to the studies of inheritance. Hereditas 11:65–106CrossRefGoogle Scholar
  91. Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population for the analysis of population-structure. Evol Int J org Evol 38:1358–1370. doi: 10.2307/2408641 Google Scholar
  92. Whiteley AR, McGarigal K, Schwartz MK (2014) Pronounced differences in genetic structure despite overall ecological similarity for two Ambystoma salamanders in the same landscape. Conserv Genet 15:573–591. doi: 10.1007/s10592-014-0562-7 CrossRefGoogle Scholar
  93. Winney BJ et al (2004) Crossing the Red Sea: phylogeography of the hamadryas baboon, Papio hamadryas hamadryas. Mol Ecol 13:2819–2827. doi: 10.1111/j.1365-294X.2004.02288.x CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Francis Isselin-Nondedeu
    • 1
  • Audrey Trochet
    • 2
    • 3
    • 5
  • Thomas Joubin
    • 1
    • 2
  • Damien Picard
    • 4
  • Roselyne Etienne
    • 2
  • Hugo Le Chevalier
    • 2
  • Delphine Legrand
    • 3
  • Alexandre Ribéron
    • 2
  1. 1.Departement Aménagement et Environnement Ecole Polytechnique de l’Université François Rabelais de Tours, CNRS; UMR 7324 CITERES équipe IPAPE, Paysages et EnvironnementToursFrance
  2. 2.CNRS, ENFA, UMR5174 EDB (Laboratoire Evolution et Diversité Biologique)Université Paul SabatierToulouseFrance
  3. 3.Station d’Ecologie Théorique et Expérimentale, UMR 5321MoulisFrance
  4. 4.UMR 6554 LETGUniversité d’AngersAngersFrance
  5. 5.CNRS, Centre for Biodiversity Theory and Modelling (CBTM)MoulisFrance

Personalised recommendations