Skip to main content

Advertisement

Log in

Spatial genetic structure of Lissotriton helveticus L. following the restoration of a forest ponds network

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

Preserving amphibian genetic diversity through ecological restoration and conservation actions is a major challenge since their populations are declining worldwide. We studied the genetic diversity and spatial genetic structure of the palmate newt (Lissotriton helveticus) 2 years after the restoration of a pond network in northwestern France with the aim of reconstructing fine-scale genetic structure and patterns of colonization. We sampled newts from 29 forest ponds including both restored and non-degraded reference ponds, and genotyped 391 individuals at 12 microsatellite loci. We used two Bayesian clustering methods to spatially delineate genetic clusters, and we also detected potential recent migrants within the network. All ponds showed low levels of observed heterozygosity (Ho = 0.534) and a mean F IS of 0.251, possibly indicating a Wahlund or bottleneck effect. Pairwise F ST suggested limited evidence of genetic differentiation among ponds. Within the pond network, we identified 3 to 4 genetic clusters. Combined with the detection of migrants, the results suggest an increase in gene flow within the restored pond network and that a high number of migrants came from the reference ponds. Our findings indicate an unexpected high dispersal ability for this small-bodied species. Overall, the absence of population structure represents a positive beginning for the restoration project. It also emphasizes the importance of spatial design in restoring a pond network and that such genetic data and methods should be used to monitor amphibians in restored habitats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alexandrino J, Froufe E, Arntzen JW, Ferrand N (2000) Genetic subdivision, glacial refugia and postglacial recolonization in the golden-striped salamander, Chioglossa lusitanica (Amphibia: Urodela). Mol Ecol 9:771–781. doi:10.1046/j.1365-294x.2000.00931.x

    Article  CAS  PubMed  Google Scholar 

  • Allentoft ME, O’Brien J (2010) Global amphibian declines, loss of genetic diversity and fitness: a review. Diversity 2:47–71

    Article  Google Scholar 

  • Andersen LW, Fog K, Damgaard C (2004) Habitat fragmentation causes bottlenecks and inbreeding in the European tree frog (Hyla arborea). Proc Royal Soc Bio Sciences 271:1293–1302. doi:10.1098/rspb.2004.2720

    Article  Google Scholar 

  • Apodaca JJ, Rissler LJ, Godwin JC (2012) Population structure and gene flow in a heavily disturbed habitat: implications for the management of the imperilled Red Hills salamander (Phaeognathus hubrichti). Conserv Genet 13:913–923. doi:10.1007/s10592-012-0340-3

    Article  Google Scholar 

  • Arruda MP, Morielle-Versute E, Silva A, Schneider MPC,, Goncalves EC (2011) Contemporary gene flow and weak genetic structuring in Rococo toad (Rhinella schneideri) populations in habitats fragmented by agricultural activities. Amphi Reptil 32:399–411. doi:10.1163/017353711x588182

    Article  Google Scholar 

  • Cabe PR, Page RB, Hanlon TJ, Aldrich ME, Connors L, Marsh DM (2007) Fine-scale population differentiation and gene flow in a terrestrial salamander (Plethodon cinereus) living in continuous habitat. Heredity 98:53–60. doi:10.1038/sj.hdy.6800905

    Article  CAS  PubMed  Google Scholar 

  • Chapuis MP, Estoup A (2007) Microsatellite null alleles and estimation of population differentiation. Mol Biol Evol 24:621–631. doi:10.1093/molbev/msl191

    Article  CAS  PubMed  Google Scholar 

  • Cornuet JM, Piry S, Luikart G, Estoup A, Solignac M (1999) New methods employing multilocus genotypes to select or exclude populations as origins of individuals. Genetics 153:1989–2000

    CAS  PubMed  PubMed Central  Google Scholar 

  • Couderc JM (1979) Observations sur les mardelles de Touraine. Norois 101:29–46

    Article  Google Scholar 

  • Cushman SA (2006) Effects of habitat loss and fragmentation on amphibians: A review and prospectus. Biol Conserv 128:231–240. doi:10.1016/j.biocon.2005.09.031

    Article  Google Scholar 

  • Dakin EE, Avise JC (2004) Microsatellite null alleles in parentage analysis. Heredity 93:504–509. doi:10.1038/sj.hdy.6800545

    Article  CAS  PubMed  Google Scholar 

  • Denoël M (1999) Le comportement social des urodèles (Social behavior of Urodels). Cahiers d’Ethologie 19:221–258

    Google Scholar 

  • Denoël M, Ficetola GF (2007) Landscape-level thresholds and newt conservation. Ecol Appl 17:302–309

    Article  PubMed  Google Scholar 

  • Dixo M, Metzger JP, Morgante JS, Zamudio KR (2009) Habitat fragmentation reduces genetic diversity and connectivity among toad populations in the Brazilian Atlantic Coastal Forest. Biol Conserv 142:1560–1569. doi:10.1016/j.biocon.2008.11.016

    Article  Google Scholar 

  • Drechsler A, Bock D, Ortmann D, Steinfartz S (2010) Ortmann’s funnel trap—a highly efficient tool for monitoring amphibian specie. Herpetol Notes 3:13–21

    Google Scholar 

  • Drechsler A et al (2013) What remains from a 454 run: estimation of success rates of microsatellite loci development in selected newt species (Calotriton asper, Lissotriton helveticus, and Triturus cristatus) and comparison with Illumina-based approaches. Ecol Evol 3:3947–3957. doi:10.1002/ece3.764

    Article  PubMed  PubMed Central  Google Scholar 

  • Earl DA, vonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Res 4:359–361. doi:10.1007/s12686-011-9548-7

    Article  Google Scholar 

  • Emel SL, Storfer A (2012) A decade of amphibian population genetic studies: synthesis and recommendations. Conserv Genet 13:1685–1689. doi:10.1007/s10592-012-0407-1

    Article  Google Scholar 

  • Emel SL, Storfer A (2015) Landscape genetics and genetic structure of the southern torrent salamander, Rhyacotriton variegatus. Conserv Genet 16:209–221. doi:10.1007/s10592-014-0653-5

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620. doi:10.1111/j.1365-294X.2005.02553.x

    Article  CAS  PubMed  Google Scholar 

  • Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Annu Rev Ecol Syst 34:487–515. doi:10.1146/annurev.ecolsys.34.011802.132419

    Article  Google Scholar 

  • Francois O, Durand E (2010) Spatially explicit Bayesian clustering models in population genetics. Mol Ecol Resour 10:773–784. doi:10.1111/j.1755-0998.2010.02868.x

    Article  PubMed  Google Scholar 

  • Frankham R (1996) Relationship of genetic variation to population size in wildlife. Conserv Biol 10:1500–1508. doi:10.1046/j.1523-1739.1996.10061500.x

    Article  Google Scholar 

  • Frankham R, Ballou JD, Briscoe DA (2002) Introduction to Conservation genetics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Frankham R, Briscoe DA, Balbou JD (2010) Introduction to conservation genetics. 2 edn. Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Gabor CR, Halliday TR (1997) Sequential mate choice by multiply mating smooth newts: females become more choosy. Behavior Ecol 8:162–166. doi:10.1093/beheco/8.2.162

    Article  Google Scholar 

  • Gilpin EM, Soulé ME (1986) Minimum viable populations: processes of species extinction. In: Sinauer (ed) Conservation biology: the science of scarcity and diversity. Massachussets, Sunderland, pp 19–34

    Google Scholar 

  • Gomez-Mestre I, Tejedo M (2004) Contrasting patterns of quantitative and neutral genetic variation in locally adapted populations of the natterjack toad, Bufo calamita. Evol Int J org Evol 58:2343–2352

    Article  CAS  Google Scholar 

  • Goudet J (1995) FSTAT: a computer program to calculate F-statistics. J Hered 86:485–486

    Article  Google Scholar 

  • Goudet J (2001) F STAT: a program to estimate and test gene diversities and fixation indices vol Updtated from Goudet 1995, 2.9.3 edn, Pearson/Prentice Hall, New Jersey

    Google Scholar 

  • Gray MJ, Smith LM, Brenes R (2004) Effects of agricultural cultivation on demographics of southern high plains amphibians. Conserv Biol 18:1368–1377

    Article  Google Scholar 

  • Griffiths RA (1996) Newts and salamanders of Europe. Academic Press (Poyser Natural History), Calton, p 188

    Google Scholar 

  • Guillot G, Mortier F, Estoup A (2005) Geneland: a computer package for landscape genetics. Mol Ecol Notes 5:712–715. doi:10.1111/j.1471-8286.2005.01031.x

    Article  CAS  Google Scholar 

  • Gvozdik L, Van Damme R (2006) Triturus newts defy the running-swimming dilemma. Evolution Int J org Evolution 60:2110–2121

    Article  Google Scholar 

  • Hapke A, Zinner D, Zischler H (2001) Mitochondrial DNA variation in Eritrean hamadryas baboons (Papio hamadryas hamadryas): life history influences population genetic structure. Behav Ecol Sociobio 50:483–492. doi:10.1007/s002650100393

    Article  Google Scholar 

  • Hedrick P (2005) ‘Genetic restoration’: a more comprehensive perspective than ‘genetic rescue’. Trends Ecol Evol 20:109–109. doi:10.1016/j.tree.2005.01.006

    Article  PubMed  Google Scholar 

  • Holderegger R, Di Giulio M (2010) The genetic effects of roads: A review of empirical evidence. Basic Appl Ecol 11:522–531. doi:10.1016/j.baae.2010.06.006

    Article  Google Scholar 

  • IUCN (2013) IUCN red list of threatened species Version 2013.2. IUCN, www document URL http://www.iucnredlist.org

  • Jackson ND, Fahrig L (2011) Relative effects of road mortality and decreased connectivity on population genetic diversity. Biol Conserv 144:3143–3148. doi:10.1016/j.biocon.2011.09.010

    Article  Google Scholar 

  • Johanet A (2010) Flux de gènes inter et intra-spécifiques chez des espèces des vallées alluviales: cas des tritons palmés et ponctués en vallée de la Loire (PhD Thesis, tel-00477761). Angers, pp 151–186

  • Johanet A et al (2009) Characterization of microsatellite loci in two closely related Lissotriton newt species. Conserv Genet 10:1903–1906. doi:10.1007/s10592-009-9850-z

    Article  CAS  Google Scholar 

  • Johansson M, Primmer CR, Sahlsten J, Merila J (2005) The influence of landscape structure on occurrence, abundance and genetic diversity of the common frog, Rana temporaria. Global Chang Biol 11:1664–1679. doi:10.1111/j.1365-2486.2005.01005.x

    Article  Google Scholar 

  • Joly P, Miaud C (1989) Fidelity to the breeding site in the Alpine newt Triturus alpestris. Behav Process 19:47–56. doi:10.1016/0376-6357(89)90030-2

    Article  CAS  Google Scholar 

  • Joly P, Miaud C, Lehmann A, Grolet O (2001a) Habitat matrix effects on pond occupancy in newts. Conserv Biol 15:239–248

    Article  Google Scholar 

  • Joly P, Miaud C, Lehmann A, Grolet O (2001b) Habitat matrix effects on pond occupancy in newts. Conserv Biol 15:239–248

    Article  Google Scholar 

  • Kovar R, Brabec M, Radovan V, Radomir B (2009) Spring migration distances of some Central European amphibian species. Amphi Reptil 30:367–378

    Article  Google Scholar 

  • Le Lay G, Angelone S, Holderegger R, Flory C, Bolliger J (2015) Increasing pond density to maintain a patchy habitat network of the European Treefrog (Hyla arborea). J Herpetol 49(2):217–221

    Article  Google Scholar 

  • Leblois R, Rousset F, Tikel D, Moritz C, Estoup A (2000) Absence of evidence for isolation by distance in an expanding cane toad (Bufo marinus) population: an individual-based analysis of microsatellite genotypes. Mol Ecol 9:1905–1909. doi:10.1046/j.1365-294x.2000.01091.x

    Article  CAS  PubMed  Google Scholar 

  • Lesbarreres D, Pagano A, Lode T (2003) Inbreeding and road effect zone in a Ranidae: the case of Agile frog, Rana dalmatina Bonaparte, 1840. C R Biol 326:S68–S72. doi:10.1016/s1631-0691(03)00040-4

    Article  PubMed  Google Scholar 

  • Maletzky A, Kaiser R, Mikulíček P (2010) Conservation genetics of crested newt species Triturus cristatus and T. carnifex within a contact zone in Central Europe: impact of interspecific introgression and gene flow. Diversity 2:28

    Article  CAS  Google Scholar 

  • Marsh DM, Milam GS, Gorham NR, Beckman NG (2005) Forest roads as partial barriers to terrestrial salamander movement. Conserv Biol 19:2004–2008. doi:10.1111/j.1523-1739.2005.00238.x

    Article  Google Scholar 

  • Marsh DM et al. (2007) Ecological and genetic evidence that low-order streams inhibit dispersal by red-backed salamanders (Plethodon cinereus). Can J Bot 85:319–327. doi:10.1139/z07-008

    Google Scholar 

  • McKay JK, Christian CE, Harrison S, Rice KJ (2005) How local is local?”—A review of practical and conceptual issues in the genetics of restoration. Rest Ecol 13:432–440 doi:10.1111/j.1526-100X.2005.00058.x

    Article  Google Scholar 

  • McRae BH, Hall SA, Beier P, Theobald DM (2012) Where to restore ecological connectivity? detecting barriers and quantifying restoration benefits. PLoS ONE 7:e52604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meirmans PG (2015) Seven common mistakes in population genetics and how to avoid them. Mol Ecol 24:3223–3231. doi:10.1111/mec.13243

    Article  PubMed  Google Scholar 

  • Mijangos JL, Pacioni C, Spencer PBS, Craig MD (2015) Contribution of genetics to ecological restoration. Mol Ecol 24:22–37. doi:10.1111/mec.12995

    Article  PubMed  Google Scholar 

  • Mila B, Carranza S, Guillaume O, Clobert J (2010) Marked genetic structuring and extreme dispersal limitation in the Pyrenean brook newt Calotriton asper (Amphibia: Salamandridae) revealed by genome-wide AFLP but not mtDNA. Mol Ecol 19:108–120. doi:10.1111/j.1365-294X.2009.04441.x

    Article  CAS  PubMed  Google Scholar 

  • Mossman CA, Waser PM (1999) Genetic detection of sex-biased dispersal. Mol Ecol 8:1063–1067. doi:10.1046/j.1365-294x.1999.00652.x

    Article  CAS  PubMed  Google Scholar 

  • Noel S, Ouellet M, Galois P, Lapointe F-J (2007) Impact of urban fragmentation on the genetic structure of the eastern red-backed salamander. Conserv Genet 8:599–606. doi:10.1007/s10592-006-9202-1

    Article  CAS  Google Scholar 

  • Orizaola G, Brana F (2003) Oviposition behaviour and vulnerability of eggs to predation in four newt species (genus Triturus). Herpetol J 13:121–124

    Google Scholar 

  • Paetkau D, Calvert W, Stirling I, Strobeck C (1995) Microsatellite analysis of population structure in Canadian polar bears. Mol Ecol 4:347–354. doi:10.1111/j.1365-294X.1995.tb00227.x

    Article  CAS  PubMed  Google Scholar 

  • Paetkau D, Slade R, Burden M, Estoup A (2004) Genetic assignment methods for the direct, real-time estimation of migration rate: a simulation-based exploration of accuracy and power. Mol Ecol 13:55–65. doi:10.1046/j.1365-294X.2004.02008.x

    Article  CAS  PubMed  Google Scholar 

  • Palo JU, Schmeller DS, Merilä J, Laurila A, Primmer CR, Kuzmin SL (2004) High degree of population subdivision in a widespread amphibian. Mol Ecol 13:2631–2644

    Article  CAS  PubMed  Google Scholar 

  • Parris KM (2006) Urban amphibian assemblages as metacommunities. J Anim Ecol 75:757–764. doi:10.1111/j.1365-2656.2006.01096.x

    Article  PubMed  Google Scholar 

  • Peterman WE, Anderson TL, Ousterhout BH, Drake DL, Semlitsch RD, Eggert LS (2015) Differential dispersal shapes population structure and patterns of genetic differentiation in two sympatric pond breeding salamanders. Conserv Genet 16:59–69. doi:10.1007/s10592-014-0640-x

    Article  Google Scholar 

  • Pidancier N, Miquel C, Miaud C (2003) Buccal swabs as a non destructive tissue sampling method for DNA analysis in Amphibians. Herpetol J 13:175–178

    Google Scholar 

  • Piry S, Alapetite A, Cornuet JM, Paetkau D, Baudouin L, Estoup A (2004) GENECLASS2: a software for genetic assignment and first-generation migrant detection. J Hered 95:536–539. doi:10.1093/jhered/esh074

    Article  CAS  PubMed  Google Scholar 

  • Poschadel JR, Moller D (2004) A versatile field method for tissue sampling on small reptiles and amphibians, applied to pond turtles, newts, frogs and toads. Conserv Genet 5:865–867. doi:10.1007/s10592-004-1974-6

    Article  CAS  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Prunier J, Kaufmann B, Léna J-P, Fenet S, Pompanon F, Joly P (2014) A 40-year-old divided highway does not prevent gene flow in the alpine newt Ichthyosaura alpestris. Conserv Genet 15:453–468. doi:10.1007/s10592-013-0553-0

    Article  Google Scholar 

  • Rannala B, Mountain JL (1997) Detecting immigration by using multilocus genotypes. PNAS America 94:9197–9201. doi:10.1073/pnas.94.17.9197

    Article  CAS  Google Scholar 

  • Rannap R, Lohmus A, Briggs L (2009) Restoring ponds for amphibians: a success story. Hydrobiologia 634:87–95. doi:10.1007/s10750-009-9884-8

    Article  Google Scholar 

  • Ray N, Lehmann A, Joly P (2002) Modeling spatial distribution of Amphibian populations: a GIS approach based on habitat matrix permeability. Biodiv Conserv 11:2143–2165

    Article  Google Scholar 

  • Reed DH, Frankham R (2003) Correlation between fitness and genetic diversity. Conserv Biol 17:230–237. doi:10.1046/j.1523-1739.2003.01236.x

    Article  Google Scholar 

  • Richardson JL, Brady SP, Wang IJ, Spear SF (2016) Navigating the pitfalls and promise of landscape genetics. Mol Ecol 25:849–863. doi:10.1111/mec.13527

    Article  PubMed  Google Scholar 

  • Rousset F (2008) GENEPOP ’ 007: a complete re-implementation of the GENEPOP software for Windows and Linux. Mol. Ecol Res 8:103–106. doi:10.1111/j.1471-8286.2007.01931.x

    Article  Google Scholar 

  • Sambrook J, Russell D (2001) Molecular cloning: a laboratory manual. 3 edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Sarasola-Puente V, Jose Madeira M, Gosa A, Lizana M, Gomez-Moliner B (2012) Population structure and genetic diversity of Rana dalmatina in the Iberian Peninsula. Conserv Genet 13:197–209. doi:10.1007/s10592-011-0276-z

    Article  Google Scholar 

  • Schon I, Raepsaet A, Goddeeris B, Bauwens D, Mergeay J, Vanoverbeke J, Martens K (2011) High genetic diversity but limited gene flow in Flemish populations of the crested newt, Triturus cristatus. Belg J Zool 141:3–13

    Google Scholar 

  • S.E.R. (2004) The SER International primer on ecological restoration (http://www.ser.org/content/ecological_restoration_primer.asp) vol 2004. Society for Ecological Restoration International Science & Policy Working Group & Tucson

  • Smith MA, Green DM (2005) Dispersal and the metapopulation paradigm in amphibian ecology and conservation: are all amphibian populations metapopulations? Ecography 28:110–128. doi:10.1111/j.0906-7590.2005.04042.x

    Article  Google Scholar 

  • Sotiropoulos K, Eleftherakos K, Kalezic ML, Legakis A, Polymeni RM (2008) Genetic structure of the alpine newt, Mesotriton alpestris (Salamandridae, Caudata), in the southern limit of its distribution: Implications for conservation. Biochem Syst Ecol 36:297–311. doi:10.1016/j.bse.2007.10.002

    Article  CAS  Google Scholar 

  • Sotiropoulos K, Eleftherakos K, Tsaparis D, Kasapidis P, Giokas S, Legakis A, Kotoulas G (2013) Fine scale spatial genetic structure of two syntopic newts across a network of ponds: implications for conservation. Conserv Genet 14:385–400. doi:10.1007/s10592-013-0452-4

    Article  Google Scholar 

  • Storfer A, Mech SG, Reudink MW, Lew K (2014) Inbreeding and strong population subdivision in an endangered salamander. Conserv Genet 15:137–151. doi:10.1007/s10592-013-0526-3

    Article  Google Scholar 

  • Straub C, Pichlmueller F, Helfer V (2015) Population genetics of fire salamanders in a pre-Alpine urbanized area (Salzburg, Austria). Salamandra 51:245–251

    Google Scholar 

  • Templeton AR, Shaw K, Routman E, Davis SK (1990) The genetic consequences of habitat fragmentation. Annals Miss Bot Garden 77:13–27. doi:10.2307/2399621

    Article  Google Scholar 

  • Titus V, Bell R, Becker CG, Zamudio K (2014) Connectivity and gene flow among Eastern Tiger Salamander (Ambystoma tigrinum) populations in highly modified anthropogenic landscapes. Conserv Genet 15:1447–1462. doi:10.1007/s10592-014-0629-5

    Article  Google Scholar 

  • Trochet A et al (2016) Intra-specific variability of hindlimb length in the palmate newt: an indicator of population isolation induced by habitat fragmentation? Biol Letters 12. doi:10.1098/rsbl.2016.0066

  • Van Buskirk J (2012) Permeability of the landscape matrix between amphibian breeding sites. Ecol Evol 2:3160–3167. doi:10.1002/ece3.424

    Article  PubMed  PubMed Central  Google Scholar 

  • Wahlund S (1928) Composition of populations and correlation appearances viewed in relation to the studies of inheritance. Hereditas 11:65–106

    Article  Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population for the analysis of population-structure. Evol Int J org Evol 38:1358–1370. doi:10.2307/2408641

    CAS  Google Scholar 

  • Whiteley AR, McGarigal K, Schwartz MK (2014) Pronounced differences in genetic structure despite overall ecological similarity for two Ambystoma salamanders in the same landscape. Conserv Genet 15:573–591. doi:10.1007/s10592-014-0562-7

    Article  Google Scholar 

  • Winney BJ et al (2004) Crossing the Red Sea: phylogeography of the hamadryas baboon, Papio hamadryas hamadryas. Mol Ecol 13:2819–2827. doi:10.1111/j.1365-294X.2004.02288.x

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all the students and field assistants who worked night and day. We are very grateful to Gilbert Pagé (Office National des Forêts Centre Val de Loire) the Herpetological society (Société Herpétologique de Touraine) and the National Forest Office for its collaboration and support. This project was granted by the French Minister of Ecology and Sustainable Development under the National Strategy for Biodiversity, and was supported by the EPL (établissement public Loire), the ERDF (european regional development fund), the AELB (agence de l’eau Loire-Bretagne), the ONF (Office National des Forêts Centre Val de Loire), and the Fondation de France grant, and was conducted under permits granted from the French authority services. We are grateful to Radika Michniewicz (CNRS Moulis) for her comments and improvement of English. We extend our thanks to the anonymous reviewers whose comments and remarks greatly helped to improve the manuscript.

Authors’ contributions

FIN, AT, AR conceived the project, designed the experiment, participated in the sampling, performed the analysis and co-wrote; TJ, RE, HLC sampled and performed the genetic analysis, DP, SB, DL were involved in the project, collaborated on the paper and the genetic analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francis Isselin-Nondedeu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Isselin-Nondedeu, F., Trochet, A., Joubin, T. et al. Spatial genetic structure of Lissotriton helveticus L. following the restoration of a forest ponds network. Conserv Genet 18, 853–866 (2017). https://doi.org/10.1007/s10592-017-0932-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-017-0932-z

Keywords

Navigation