Advertisement

Conservation Genetics

, Volume 18, Issue 2, pp 411–422 | Cite as

Population history and genetic bottlenecks in translocated Cook Strait giant weta, Deinacrida rugosa: recommendations for future conservation management

  • Daniel J. WhiteEmail author
  • Corinne Watts
  • Julia Allwood
  • Diana Prada
  • Ian Stringer
  • Danny Thornburrow
  • Thomas R. Buckley
Research Article

Abstract

Translocating populations of endangered animals to predator-free offshore islands is an extreme, and potentially risky, conservation management strategy. There are many examples of failures and successes, however relatively little work has been done to formally quantify the required numbers of translocated individuals to increase the chance of successful establishment. Cook Strait giant weta, Deinacrida rugosa Buller 1870 (Orthoptera: Anostostomatidae), of New Zealand are an example of an at-risk species where extreme conservation measures are needed, due to their ground-dwelling lifestyle making them particularly prone to habitat loss and predation by alien species following human settlement. Here, we have used microsatellite markers to characterise genetic diversity within and between two parental populations (Mana and Stephens Islands), and two translocated populations (Maud and Matiu/Somes Islands), and estimate probabilities of genetic bottlenecks. We have modelled various demographic scenarios to quantify the severity of effective population size fluctuations resulting from translocations using DIYABC, and explored the number of founders needed to retain rare alleles using ALLELERETAIN. Our results suggest that populations have expanded on both Maud Island and Matiu/Somes Island from effective population sizes at time of translocation of 36 and 47 respectively, but provide evidence for a genetic bottleneck on Maud Island. We also show that translocations have had minimal impact on parental effective population sizes. The impact of our results on future conservation management efforts is discussed.

Keywords

Cook Strait giant weta Demographic history Translocation Bottleneck Genetic diversity Conservation management 

Notes

Acknowledgements

We thank Jo Greenman for her support while sampling on Matiu/Somes Island, Debra Wotton and Les Moran for collecting the antennal samples from Stephens Island, and Robyn Howitt for assistance with lab management. The authors are indebted to Emily Weiser and Catherine Grueber for their advice on the application of ALLELERETAIN to an invertebrate species, and acknowledge Tammy Steeves for first suggesting the use of ALLELERETAIN. This project was funded by core funding for Crown Research Institutes from the Ministry of Business, Innovation and Employment’s Science and Innovation Group.

Supplementary material

10592_2016_916_MOESM1_ESM.pdf (96 kb)
Supplementary material 1 (PDF 96 kb)

References

  1. Abdelkrim J, Robertson BC, Stanton JAL, Gemmell NJ (2009) Fast, cost-effective development of species-specific microsatellite markers by genomic sequencing. Biotechniques 46:185. doi: 10.2144/000113084 CrossRefPubMedGoogle Scholar
  2. Allendorf FW, Luikart G (2007) Conservation and the genetics of populations. Wiley-Blackwell, MaldenGoogle Scholar
  3. Allendorf FW, England PR, Luikart G, Ritchie PA, Ryman N (2008) Genetic effects of harvest on wild animal populations. Trends Ecol Evol 23:327–337. doi: 10.1016/j.tree.2008.02.008 CrossRefPubMedGoogle Scholar
  4. Buckley TR, Leschen RAB (2013) Comparative phylogenetic analysis reveals long-term isolation of lineages on the Three Kings Islands, New Zealand. Biol J Linn Soc 108:361–377. doi: 10.1111/j.1095-8312.2012.02009.x CrossRefGoogle Scholar
  5. Buckley TR, Marske K, Attanayake D (2010) Phylogeography and ecological niche modelling of the New Zealand stick insect Clitarchus hookeri (White) support survival in multiple coastal refugia. J Biogeogr 37:682–695. doi: 10.1111/j.1365-2699.2009.02239.x CrossRefGoogle Scholar
  6. Buckley TR, Krosch M, Leschen RAB (2015) Evolution of New Zealand insects: summary and prospectus for future research. Austral Entomology 54:1–27. doi: 10.1111/aen.12116 CrossRefGoogle Scholar
  7. Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2014PubMedPubMedCentralGoogle Scholar
  8. Cornuet JM et al (2014) DIYABC v2.0: a software to make approximate Bayesian computation inferences about population history using single nucleotide polymorphism, DNA sequence and microsatellite data. Bioinformatics 30:1187–1189. doi: 10.1093/bioinformatics/btt763 CrossRefPubMedGoogle Scholar
  9. Dabrowski MJ, Pilot M, Kruczyk M, Zmihorski M, Umer HM, Gliwicz J (2014) Reliability assessment of null allele detection: inconsistencies between and within different methods. Mol Ecol Resour 14:361–373. doi: 10.1111/1755-0998.12177 CrossRefPubMedGoogle Scholar
  10. Dabrowski MJ, Bornelov S, Kruczyk M, Baltzer N, Komorowski J (2015) ‘True’ null allele detection in microsatellite loci: a comparison of methods, assessment of difficulties and survey of possible improvements. Mol Ecol Resour 15:477–488. doi: 10.1111/1755-0998.12326 CrossRefPubMedGoogle Scholar
  11. Earl DA, von Holdt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361. doi: 10.1007/s12686-011-9548-7 CrossRefGoogle Scholar
  12. Ellegren H (2000) Microsatellite mutations in the germline: implications for evolutionary inference. Trends Genet 16:551–558. doi: 10.1016/s0168-9525(00)02139-9 CrossRefPubMedGoogle Scholar
  13. Ellegren H (2004) Microsatellites: simple sequences with complex evolution. Nat Rev Genet 5:435–445. doi: 10.1038/nrg1348 CrossRefPubMedGoogle Scholar
  14. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620. doi: 10.1111/j.1365-294X.2005.02553.x CrossRefPubMedGoogle Scholar
  15. Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567. doi: 10.1111/j.1755-0998.2010.02847.x CrossRefPubMedGoogle Scholar
  16. Faircloth BC (2008) Msatcommander: detection of microsatellite repeat arrays and automated, locus-specific primer design. Mol Ecol Resour 8:92–94. doi: 10.1111/j.1471-8286.2007.01884.x CrossRefPubMedGoogle Scholar
  17. Gascoigne B (1996) First transfer of Cook Strait giant wētā (Deinacrida rugosa) from Mana Island to Somes Island (Matiu).Google Scholar
  18. Gibbs GW (2001) Habitats and biogeography of New Zealand’s Deinacridine and tusked weta species. In: Field LH (ed) The biology of weta, king crickets and their allies. CABI Publishing, UK, pp 35–55CrossRefGoogle Scholar
  19. Girod C, Vitalis R, Leblois R, Freville H (2011) Inferring population decline and expansion from microsatellite data: a simulation-based evaluation of the Msvar method. Genetics 188:165–U287. doi: 10.1534/genetics.110.121764 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Goudet J (1995) FSTAT (Version 1.2): a computer program to calculate F-statistics. J Hered 86:485–486CrossRefGoogle Scholar
  21. Guo SW, Thompson EA (1992) Performing the exact test of Hardy–Weinberg proportion for multiple alleles. Biometrics 48:361–372. doi: 10.2307/2532296 CrossRefPubMedGoogle Scholar
  22. Hale ML, Alabergere G, Hale RJ (2010) Polymorphic microsatellite loci for the Banks Peninsula tree weta Hemideina ricta, and cross amplification in H. femorata. Conserv Genet Resour 2:329–331. doi: 10.1007/s12686-010-9232-3 CrossRefGoogle Scholar
  23. Lande R, Engen S, Saether BE (2003) Stochastic population dynamics in ecology and conservation. Oxford University Press, New YorkCrossRefGoogle Scholar
  24. Lynch M (1991) The genetic interpretation of inbreeding depression and outbreeding depression. Evolution 45:622–629. doi: 10.2307/2409915 CrossRefGoogle Scholar
  25. Lynch M (1997) Inbreeding depression and outbreeding depression. In: Grant WS (ed.) Genetic effects of straying of non-native hatchery fish into natural populations. US Department of Commerce, NOAA Technical Memorandum, NMFS-NWFSC-30, pp 59–70Google Scholar
  26. McIntyre M (2001) The ecology of some large weta species in New Zealand. In: Field LH (ed) The biology of weta, king crickets and their allies. CABI Publishing, UK, pp 225–242CrossRefGoogle Scholar
  27. Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295. doi: 10.1111/j.1471-8286.2005.01155.x CrossRefGoogle Scholar
  28. Pillans RB, Pullar WA, Selby MJ, Soons JM (1982) The age and development of the New Zealand landscape. In: Soons JM, Selby MJ (eds) Landforms of New Zealand. Longman Paul Limited, Auckland, pp 15–43Google Scholar
  29. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedPubMedCentralGoogle Scholar
  30. R Development Core Team (2015) R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/
  31. Ramsay G (1955) The exoskeleton, musculature of the head and the life-cycle of Deincrida rugosa Buller 1870. MSc thesis, Victoria University of Wellington.Google Scholar
  32. Rousset F (2008) GENEPOP ‘ 007: a complete re-implementation of the GENEPOP software for Windows and Linux. Mol Ecol Resour 8:103–106. doi: 10.1111/j.1471-8286.2007.01931.x CrossRefPubMedGoogle Scholar
  33. Schuelke M (2000) An economic method for the fluorescent labeling of PCR fragments. Nat Biotechnol 18:233–234. doi: 10.1038/72708 CrossRefPubMedGoogle Scholar
  34. Smith PJ (2009) Genetic principles for freshwater restoration in New Zealand. NZ J Mar Freshw Res 43:749–762CrossRefGoogle Scholar
  35. Stringer I (2001) The reproductive biology and the eggs of New Zealand Anostostomatidae. In: Field LH (ed) The biology of weta, king crickets and their allies. CABI Publishing, UK, pp 379–398CrossRefGoogle Scholar
  36. Suggate RP (1990) Late pliocene and quaternary glaciations of New-Zealand. Quat Sci Rev 9:175–197. doi: 10.1016/0277-3791(90)90017-5 CrossRefGoogle Scholar
  37. Towns DR, Bellingham PJ, Mulder CPH, Lyver PO (2012) A research strategy for biodiversity conservation on New Zealand’s offshore islands. NZ J Ecol 36:1–20Google Scholar
  38. Tracy LN, Wallis GP, Efford MG, Jamieson IG (2011) Preserving genetic diversity in threatened species reintroductions: how many individuals should be released? Anim Conserv 14:439–446. doi: 10.1111/j.1469-1795.2011.00448.x CrossRefGoogle Scholar
  39. van Oosterhout C, Weetman D, Hutchinson WF (2006) Estimation and adjustment of microsatellite null alleles in nonequilibrium populations. Mol Ecol Notes 6:255–256. doi: 10.1111/j.1471-8286.2005.01082.x CrossRefGoogle Scholar
  40. Watts C, Stringer I, Sherley GH, Gibbs GW, Green CJ (2008) History of weta (Orthoptera: Anostostomatidae) translocation in New Zealand: lessons learned, islands as sanctuaries and the future. J Insect Conserv 12:359–370. doi: 10.1007/s10841-008-9154-5 CrossRefGoogle Scholar
  41. Watts C, Empson R, Thornburrow D, Rohan M (2012) Movements, behaviour and survival of adult Cook Strait giant weta (Deinacrida rugosa; Anostostomatidae: Orthoptera) immediately after translocation as revealed by radiotracking. J Insect Conserv 16:763–776. doi: 10.1007/s10841-012-9461-8 CrossRefGoogle Scholar
  42. Weiser EL, Grueber CE, Jamieson IG (2012) AlleleRetain: a program to assess management options for conserving allelic diversity in small, isolated populations. Mol Ecol Resour 12:1161–1167. doi: 10.1111/j.1755-0998.2012.03176.x CrossRefPubMedGoogle Scholar
  43. Weiser EL, Grueber CE, Jamieson IG (2013) Simulating retention of rare alleles in small populations to assess management options for species with different life histories. Conserv Biol 27:335–344. doi: 10.1111/cobi.12011 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Landcare Research, Auckland Mail CentreAucklandNew Zealand
  2. 2.Landcare ResearchHamiltonNew Zealand
  3. 3.Western Australian MuseumWelshpool DCAustralia
  4. 4.Department of ConservationWellingtonNew Zealand
  5. 5.School of Biological SciencesThe University of AucklandAucklandNew Zealand

Personalised recommendations