Conservation Genetics

, Volume 18, Issue 3, pp 607–619 | Cite as

The population genetics of two orchid bees suggests high dispersal, low diploid male production and only an effect of island isolation in lowering genetic diversity

  • Antonella SoroEmail author
  • J. Javier G. Quezada-Euan
  • Panagiotis Theodorou
  • Robin F. A. Moritz
  • Robert J. Paxton
Research Article


Orchid bees (Hymenoptera, Apidae, Euglossini) are important pollinators of many plant families in Neotropical forests, habitats that have become increasingly degraded and fragmented by agricultural practices. To understand the extent to which loss of natural habitat and isolation has affected the genetic diversity and diploid male production (DMP) of two orchid bee species, Euglossa dilemma and Euglossa viridissima, we collected and genotyped 1686 males at five microsatellite loci and tested for differences in allelic richness, heterozygosity and DMP across three different types of land use (natural, agricultural and urban) and between mainland and island populations in the Yucatan Peninsula of Mexico. We also investigated the impact of land use and geographic isolation on gene flow. Euglossa dilemma and E. viridissima seemed to be particularly resilient to loss of natural habitat; in locations with human impact, we did not find reduced genetic diversity, and populations generally showed very little population genetic structure. Only on islands did E. dilemma show significantly reduced genetic diversity. Even after accounting for putative null alleles, DMP was very low (0.2–1.3%) across all sampling sites, including on islands. We therefore suggest that DMP is an insensitive measure of inbreeding and population decline in our two study species.


Effective population size Euglossa Gene flow Habitat fragmentation Inbreeding Mexico Yucatan Peninsula 



We thank the editors and referees for comments that helped improve the manuscript, Ramirez Pech, Rubén Medina and Tony Gonzalez for collecting the male individuals used in this study and Petra Leibe and Rita Radzeviciute for their assistance in the laboratory. We thank CONACyT-EU Project FONCICyT 94293 (Mutualismos y abejas en paisajes tropicales) for funding.

Supplementary material

10592_2016_912_MOESM1_ESM.docx (160 kb)
Supplementary material 1 (DOCX 159 kb)


  1. Barbier EB (2004) Agricultural expansion, resource booms and growth in Latin America: implication for long-run economic development. World Dev 32:137–157CrossRefGoogle Scholar
  2. Bates D, Mächler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48. doi: 10.18637/jss.v067.i01 CrossRefGoogle Scholar
  3. Beye M, Hasselmann M, Fondrk MK, Page RE Jr, Omholt SW (2003) The gene csd is the primary signal for sexual development in the honeybee and encodes an SR-type protein. Cell 114:419–429PubMedCrossRefGoogle Scholar
  4. Boff S, Soro A, Paxton R, Alves-dos-Santos I (2014) Island isolation reduces genetic diversity and connectivity but does not significantly elevate diploid male production in a neotropical orchid bee. Conserv Genet 15:1123–1135. doi: 10.1007/s10592-014-0605-0 CrossRefGoogle Scholar
  5. Bohonak A (1999) Dispersal, gene flow, and population structure. Q Rev Biol 74:21–45PubMedCrossRefGoogle Scholar
  6. Brand P, Ramirez S, Leese F, Quezada-Euan J, Tollrian R, Eltz T (2015) Rapid evolution of chemosensory receptor genes in a pair of sibling species of orchid bees (Apidae: Euglossini). BMC Evol Biol 15:176PubMedPubMedCentralCrossRefGoogle Scholar
  7. Brown MJF, Paxton RJ (2009) The conservation of bees: a global perspective. Apidologie 40:410–416. doi: 10.1051/apido/2009019 CrossRefGoogle Scholar
  8. Cameron SA, Lozier JD, Strange JP, Koch JB, Cordes N, Solter LF, Griswold TL (2011) Patterns of widespread decline in North American bumble bees. Proc Natl Acad Sci USA 108:662–667PubMedPubMedCentralCrossRefGoogle Scholar
  9. Cerântola NM, Oi CA, Cervini M, Del Lama A (2011) Genetic differentiation of urban populations of Euglossa cordata from the state of São Paulo, Brazil. Apidologie 42:214–222. doi: 10.1051/apido/2010055 CrossRefGoogle Scholar
  10. Cincotta RP, Engelman R (2000) Nature’s place: human population and the future of biological diversity. Population Action International, Washington, DCGoogle Scholar
  11. Cocom Pech M, May-Itzá WdJ, Medina Medina L, Quezada-Euán J (2008) Sociality in Euglossa (Euglossa) viridissima Friese (Hymenoptera, Apidae, Euglossini). Insectes Soc 55:428–433. doi: 10.1007/s00040-008-1023-4 CrossRefGoogle Scholar
  12. Cook JM (1993) Sex determination in the Hymenoptera: a review of models and evidence. Heredity 71:421–435CrossRefGoogle Scholar
  13. Cook JM, Crozier RH (1995) Sex determination and population biology in the hymenoptera. Trends Ecol Evol 10:281–286PubMedCrossRefGoogle Scholar
  14. Coulon A, Fitzpatrick JW, Bowman R, Stith BM, Makarewich CA, Stenzler LM, Lovette IJ (2008) Congruent population structure inferred from dispersal behaviour and intensive genetic surveys of the threatened Florida scrub-jay (Aphelocoma cœrulescens). Mol Ecol 17:1685–1701. doi: 10.1111/j.1365-294X.2008.03705.x PubMedCrossRefGoogle Scholar
  15. Crozier RH (1971) Heterozygosity and sex determination in haplo-diploidy. Am Nat 105:399–412. doi: 10.2307/2459509 CrossRefGoogle Scholar
  16. Crozier RH, Pamilo P (1996) Evolution of social insect colonies. Sex allocation and Kin selection. Oxford University Press, OxfordGoogle Scholar
  17. Darvill B, Ellis J, Lye G, Goulson D (2006) Population structure and inbreeding in a rare and declining bumblebee, Bombus muscorum (Hymenoptera: Apidae). Mol Ecol 15:601–611. doi: 10.1111/j.1365-294x.2006.02797.x PubMedCrossRefGoogle Scholar
  18. Davis ES, Murray TE, Fitzpatrick U, Brown MJF, Paxton RJ (2010) Landscape effects on extremely fragmented populations of a rare solitary bee, Colletes floralis. Mol Ecol 19:4922–4935. doi: 10.1111/j.1365-294X.2010.04868.x PubMedCrossRefGoogle Scholar
  19. de Boer J, Groenen M, Pannebakker B, Beukeboom L, Kraus R (2015) Population-level consequences of complementary sex determination in a solitary parasitoid. BMC Evol Biol 15:98PubMedPubMedCentralCrossRefGoogle Scholar
  20. Dieringer D, Schlötterer C (2003) microsatellite analyser (MSA): a platform independent analysis tool for large microsatellite data sets. Mol Ecol Notes 3:167–169. doi: 10.1046/j.1471-8286.2003.00351.x CrossRefGoogle Scholar
  21. Dressler RL (1982) Biology of the orchid bees (Euglossini). Annu Rev Ecol Syst 13:373–394. doi: 10.1146/ CrossRefGoogle Scholar
  22. Dufresnes C, Perrin N (2015) Effect of biogeographic history on population vulnerability in European amphibians. Conserv Biol 29:1235–1241. doi: 10.1111/cobi.12490 PubMedCrossRefGoogle Scholar
  23. El Mousadik A, Petit RJ (1996) High level of genetic differentiation for allelic richness among populations of the argan tree [Argania spinosa (L.) Skeels] endemic to Morocco. Theor Appl Genet 92:832–839PubMedCrossRefGoogle Scholar
  24. Ellis J, Knight M, Darvill B, Goulson D (2006) Extremely low effective population sizes, genetic structuring and reduced genetic diversity in a threatened bumblebee species, Bombus sylvarum (Hymenoptera: Apidae). Mol Ecol 15:4375–4386PubMedCrossRefGoogle Scholar
  25. Eltz T et al (2008) An olfactory shift is associated with male perfume differentiation and species divergence in orchid bees. Curr Biol 18:1844–1848. doi: 10.1016/j.cub.2008.10.049 PubMedCrossRefGoogle Scholar
  26. Eltz T, Fritzsch F, Pech JR, Zimmermann Y, RamÍRez SR, Quezada-Euan JJG, BembÉ B (2011) Characterization of the orchid bee Euglossa viridissima (Apidae: Euglossini) and a novel cryptic sibling species, by morphological, chemical, and genetic characters. Zool J Linn Soc 163:1064–1076. doi: 10.1111/j.1096-3642.2011.00740.x CrossRefGoogle Scholar
  27. Ewers RM, Didham RK (2006) Confounding factors in the detection of species responses to habitat fragmentation. Biol Rev 81:117–142. doi: 10.1017/s1464793105006949 PubMedCrossRefGoogle Scholar
  28. Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Annu Rev Ecol Evol S 34:487–515. doi: 10.1146/annurev.ecolsys.34.011802.132419 CrossRefGoogle Scholar
  29. Farias IP, Santos WG, Gordo M, Hrbek T (2015) Effects of forest fragmentation on genetic diversity of the critically endangered primate, the pied yamarin (Saguinus bicolor): implications for conservation. J Hered 106:512–521. doi: 10.1093/jhered/esv048 CrossRefGoogle Scholar
  30. Francisco FO, Santiago LR, Mizusawa YM, Oldroyd BP, Arias MC (2015) Genetic structure of island and mainland populations of a Neotropical bumble bee species. J Insect Conserv 20:383–394. doi: 10.1007/s10841-016-9872-z CrossRefGoogle Scholar
  31. Frankham R (1995) Conservation genetics. Annu Rev Genet 29:305–327. doi: 10.1146/ PubMedCrossRefGoogle Scholar
  32. Frankham R (1997) Do island populations have less genetic variation than mainland populations? Heredity 78:311–327PubMedCrossRefGoogle Scholar
  33. Frankham R (2003) Genetics and conservation biology. CR Biol 326:22–29. doi: 10.1016/S1631-0691(03)00023-4 CrossRefGoogle Scholar
  34. Franzén M, Nilsson SG (2010) Both population size and patch quality affect local extinctions and colonizations. P R Soc Lond B 277:79–85CrossRefGoogle Scholar
  35. Galbusera P, Githiru M, Lens L, Matthysen E (2004) Genetic equilibrium despite habitat fragmentation in an Afrotropical bird. Mol Ecol 13:1409–1421. doi: 10.1111/j.1365-294X.2004.02175.x PubMedCrossRefGoogle Scholar
  36. Gempe T, Beye M (2011) Function and evolution of sex determination mechanisms, genes and pathways in insects. BioEssays 33:52–60. doi: 10.1002/bies.201000043 PubMedPubMedCentralCrossRefGoogle Scholar
  37. Giangarelli D, Freiria G, Ferreira D, Aguiar WA, Penha RES et al (2015) Orchid bees: a new assessment on the rarity of diploid males in populations of this group of Neotropical pollinators. Apidologie 46:606–617CrossRefGoogle Scholar
  38. Gilpin ME, Soulé ME (1986) Minimum viable populations: process of species extinction. In: Soulé ME (ed) Conservation biology: the science of scarcity and diversity. Sinauer, Sunderland, pp 19–34Google Scholar
  39. Gómez-Pompa A, Kaus A (1999) From pre-Hispanic to future conservation alternatives: lessons from Mexico. Proc Natl Acad Sci USA 96:5982–5986PubMedPubMedCentralCrossRefGoogle Scholar
  40. Gomez-Pompa A, Vazquez-Yanes C, Guevara S (1972) The tropical rain forest: a nonrenewable resource. Science 177:762–765PubMedCrossRefGoogle Scholar
  41. Goulson D, Kaden JC, Lepais O, Lye GC, Darvill B (2011) Population structure, dispersal and colonization history of the garden bumblebee Bombus hortorum in the Western Isles of Scotland. Conserv Genet 12:867–879. doi: 10.1007/s10592-011-0190-4 CrossRefGoogle Scholar
  42. Goulson D, Nicholls E, Botías C, Rotheray EL (2015) Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science 347(6229):1255957. doi: 10.1126/science.1255957 PubMedCrossRefGoogle Scholar
  43. Hanski I (2011) Habitat loss, the dynamics of biodiversity and a perspective on conservation. AMBIO 40:248–255. doi: 10.1007/s13280-011-0147-3 PubMedPubMedCentralCrossRefGoogle Scholar
  44. Harpur BA, Sobhani M, Zayed A (2013) A review of the consequences of complementary sex determination and diploid male production on mating failures in the Hymenoptera. Entom Exp Appl 146:156–164. doi: 10.1111/j.1570-7458.2012.01306.x CrossRefGoogle Scholar
  45. Hedrick PW (2005) A standardized genetic differentiation measure. Evolution 59:1633–1638PubMedCrossRefGoogle Scholar
  46. Heimpel GE, de Boer JG (2008) Sex determination in the Hymenoptera. Annu Rev Entomol 53:209–230PubMedCrossRefGoogle Scholar
  47. Hoban S, Arntzen JA, Bruford MW, Godoy JA, Rus Hoelzel A et al (2014) Comparative evaluation of potential indicators and temporal sampling protocols for monitoring genetic erosion. Evol Appl 7:984–998PubMedPubMedCentralCrossRefGoogle Scholar
  48. Hothorn T, Bretz F, Westfall P (2008) Simultaneous inference in general parametric models. Biometrical J 50:346–363CrossRefGoogle Scholar
  49. Husemann M, Cousseau L, Callens T, Matthysen E, Vangestel C, Hallmann C, Lens L (2015) Post-fragmentation population structure in a cooperative breeding Afrotropical cloud forest bird: emergence of a source-sink population network. Mol Ecol 24:1172–1187. doi: 10.1111/mec.13105 PubMedCrossRefGoogle Scholar
  50. Jackson ND, Fahrig L (2014) Landscape context affects genetic diversity at a much larger spatial extent than population abundance. Ecology 95:871–881. doi: 10.1890/13-0388.1 PubMedCrossRefGoogle Scholar
  51. Jaffé R, Castilla A, Pope N, Imperatriz-Fonseca VL, Metzger JP, Arias MC, Jha S (2015) Landscape genetics of a tropical rescue pollinator. Conserv Genet 17:267–278. doi: 10.1007/s10592-015-0779-0 CrossRefGoogle Scholar
  52. Janzen DH (1971) Euglossine bees as long-distance pollinators of tropical plants. Science 171:203–205. doi: 10.1126/science.171.3967.203 PubMedCrossRefGoogle Scholar
  53. Jost L (2008) GST and its relatives do not measure differentiation. Mol Ecol 17:4015–4026PubMedCrossRefGoogle Scholar
  54. Keller D, van Strien MJ, Herrmann M, Bolliger J, Edwards PJ, Ghazoul J, Holderegger R (2013) Is functional connectivity in common grasshopper species affected by fragmentation in an agricultural landscape? Agr Ecosyst Environ 175:39–46. doi: 10.1016/j.agee.2013.05.006 CrossRefGoogle Scholar
  55. Koh I, Lonsdorf EV, Williams NM, Brittain C, Isaacs R, Gibbs J, Ricketts TH (2016) Modeling the status, trends, and impacts of wild bee abundance in the United States. Proc Natl Acad Sci USA 113:140–145. doi: 10.1073/pnas.1517685113 PubMedCrossRefGoogle Scholar
  56. Landaverde-González P, Enríquez E, Ariza MA, Murray T, Paxton RJ, Husemann M (2016) Habitat fragmentation and the population genetics of the native bee species Partamona bilineata (Hymenoptera: Apidae: Meliponini) in the cloud forest of Guatemala. In review, this special issueGoogle Scholar
  57. Landguth EL, Cushman SA, Schwartz MK, McKelvey KS, Murphy M, Luikart G (2010) Quantifying the lag time to detect barriers in landscape genetics. Mol Ecol 19:4179–4191. doi: 10.1111/j.1365-294X.2010.04808.x PubMedCrossRefGoogle Scholar
  58. Laurance WF, Sayer J, Cassman KG (2014) Agricultural expansion and its impacts on tropical nature. Trends Ecol Evol 29:107–116. doi: 10.1016/j.tree.2013.12.001 PubMedCrossRefGoogle Scholar
  59. Lechner S, Ferretti L, Schöning C, Kinuthia W, Willemsen D, Hasselmann M (2014) Nucleotide variability at its limit? Insights into the number and evolutionary dynamics of the sex-determining specificities of the honey bee Apis mellifera. Mol Biol Evol 31:272–287. doi: 10.1093/molbev/mst207 PubMedCrossRefGoogle Scholar
  60. Lewis SL, Edwards DP, Galbraith D (2015) Increasing human dominance of tropical forests. Science 349:827–832PubMedCrossRefGoogle Scholar
  61. López-Uribe MM, Almanza MT, Ordoñez M (2007) Diploid male frequencies in Colombian populations of euglossine bees. Biotropica 39:660–662. doi: 10.1111/j.1744-7429.2007.00287.x CrossRefGoogle Scholar
  62. Lozier JD (2014) Revisiting comparisons of genetic diversity in stable and declining species: assessing genome-wide polymorphism in North American bumble bees using RAD sequencing. Mol Ecol 23:788–801. doi: 10.1111/mec.12636 PubMedCrossRefGoogle Scholar
  63. Lozier JD, Strange JP, Stewart IJ, Cameron SA (2011) Patterns of range-wide genetic variation in six North American bumble bee (Apidae: Bombus) species. Mol Ecol 20:4870–4888. doi: 10.1111/j.1365-294X.2011.05314.x PubMedCrossRefGoogle Scholar
  64. Maebe K, Meeus I, Ganne M, De Meulemeester T, Biesmeijer K, Smagghe G (2015) Microsatellite analysis of museum specimens reveals historical differences in genetic diversity between declining and more stable Bombus species. PLoS ONE 10:e0127870. doi: 10.1371/journal.pone.0127870 PubMedPubMedCentralCrossRefGoogle Scholar
  65. Martínez-Cruz B, Godoy JA, Negro JJ (2007) Population fragmentation leads to spatial and temporal genetic structure in the endangered Spanish imperial eagle. Mol Ecol 16:477–486. doi: 10.1111/j.1365-294X.2007.03147.x PubMedCrossRefGoogle Scholar
  66. Matschiner M, Salzburger W (2009) TANDEM: integrating automated allele binning into genetics and genomics workflows. Bioinformatics 25:1982–1983. doi: 10.1093/bioinformatics/btp303 PubMedCrossRefGoogle Scholar
  67. May-Itzá W, Medina Medina LA, Medina S, Paxton RJ, Quezada-Euán JJG (2014) Seasonal nest characteristics of a facultatively social orchid bee, Euglossa viridissima, in the Yucatan Peninsula, Mexico. Insectes Soc 61:183–190. doi: 10.1007/s00040-014-0342-x CrossRefGoogle Scholar
  68. Meirmans PG, Hedrick PW (2011) Assessing population structure: FST and related measures. Mol Ecol Resour 11:5–18. doi: 10.1111/j.1755-0998.2010.02927.x PubMedCrossRefGoogle Scholar
  69. Meirmans PG, Van Tienderen PH (2004) GENOTYPE and GENODIVE: two programs for the analysis of genetic diversity of asexual organisms. Mol Ecol Notes 4:792–794CrossRefGoogle Scholar
  70. Nakagawa S, Schielzeth H (2013) A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol Evol 4:133–142. doi: 10.1111/j.2041-210x.2012.00261.x CrossRefGoogle Scholar
  71. Napolitano C, Díaz D, Sanderson J, Johnson WE, Ritland K, Ritland CE, Poulin E (2015) Reduced genetic diversity and increased dispersal in guigna (Leopardus guigna) in Chilean fragmented landscapes. J Hered 106:522–536. doi: 10.1093/jhered/esv025 CrossRefGoogle Scholar
  72. Nei M (1977) F-statistics and analysis of gene diversity in subdivided populations. Ann Hum Genet 41:225–233. doi: 10.1111/j.1469-1809.1977.tb01918.x PubMedCrossRefGoogle Scholar
  73. Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New YorkGoogle Scholar
  74. Nemésio A, Santos LM, Vasconcelos HL (2015) Long-term ecology of orchid bees in an urban forest remnant. Apidologie 46:359–368. doi: 10.1007/s13592-014-0328-8 CrossRefGoogle Scholar
  75. Oomen RA, Reudink MW, Nocera JJ, Somers CM, Green MC, Kyle CJ (2011) Mitochondrial evidence for panmixia despite perceived barriers to gene flow in a widely distributed waterbird. J Hered 102:584–592. doi: 10.1093/jhered/esr055 PubMedCrossRefGoogle Scholar
  76. Ortego J, Aguirre M, Cordero PJ (2010) Population genetics of Mioscirtus wagneri, a grasshopper showing a highly fragmented distribution. Mol Ecol 19:472–483. doi: 10.1111/j.1365-294X.2009.04512.x PubMedCrossRefGoogle Scholar
  77. Paxton RJ, Thorén PA, Gyllenstrand N, Tengö J (2000) Microsatellite DNA analysis reveals low diploid male production in a communal bee with inbreeding. Biol J Linn Soc 69:483–502. doi: 10.1111/j.1095-8312.2000.tb01220.x CrossRefGoogle Scholar
  78. Paxton RJ, Zobel M, Steiner J, Zillikens A (2009) Microsatellite loci for Euglossa annectans (Hymenoptera: Apidae) and their variability in other orchid bees. Mol Ecol Resour 9:1221–1223PubMedCrossRefGoogle Scholar
  79. Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295CrossRefGoogle Scholar
  80. Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28:2537–2539PubMedPubMedCentralCrossRefGoogle Scholar
  81. Pellet J, Fleishman E, Dobkin DS, Gander A, Murphy DD (2007) An empirical evaluation of the area and isolation paradigm of metapopulation dynamics. Biol Conserv 136:483–495. doi: 10.1016/j.biocon.2006.12.020 CrossRefGoogle Scholar
  82. Phillipsen IC, Lytle DA (2013) Aquatic insects in a sea of desert: population genetic structure is shaped by limited dispersal in a naturally fragmented landscape. Ecography 36:731–743. doi: 10.1111/j.1600-0587.2012.00002.x CrossRefGoogle Scholar
  83. Pokorny T, Loose D, Dyker G, Quezada-Euán JJ, Eltz T (2015) Dispersal ability of male orchid bees and direct evidence for long-range flights. Apidologie 46:224–237. doi: 10.1007/s13592-014-0317-y CrossRefGoogle Scholar
  84. Rosa JF, Ramalho M, Arias MC (2016) Functional connectivity and genetic diversity of Eulaema atleticana (Apidae, Euglossina) in the Brazilian Atlantic Forest Corridor: assessment of gene flow. Biotropica 48:509–517. doi: 10.1111/btp.12321 CrossRefGoogle Scholar
  85. Ross KG, Vargo EL, Keller L, Trager JC (1993) Effect of a founder event on variation in the genetic sex-determining system of the fire ant Solenopsis invicta. Genetics 135:843–854PubMedPubMedCentralGoogle Scholar
  86. Roubik DW, Hanson PE (2004) Orchid bees of tropical America. Instituto Nacional de Biodiversidad, Costa RicaGoogle Scholar
  87. Roubik DW, Weight LA, Bonilla MA (1996) Population genetics, diploid males and limits to social evolution of euglossine bees. Evolution 50:931–935. doi: 10.2307/2410866 CrossRefGoogle Scholar
  88. Rueda X (2010) Understanding deforestation in the southern Yucatán: insights from a sub-regional, multi-temporal analysis. Reg Environ Change 10:175–189. doi: 10.1007/s10113-010-0115-7 CrossRefGoogle Scholar
  89. Ruf D, Dorn S, Mazzi D (2013) Unexpectedly low frequencies of diploid males in an inbreeding parasitoid with complementary sex determination. Biol J Linn Soc 108:79–86. doi: 10.1111/j.1095-8312.2012.01976.x CrossRefGoogle Scholar
  90. Scheper J et al (2014) Museum specimens reveal loss of pollen host plants as key factor driving wild bee decline in The Netherlands. PNAS 111:17552–17557. doi: 10.1073/pnas.1412973111 PubMedPubMedCentralCrossRefGoogle Scholar
  91. Schmieder S, Colinet D, Poirié M (2012) Tracing back the nascence of a new sex-determination pathway to the ancestor of bees and ants. Nat Commun 3:895PubMedPubMedCentralCrossRefGoogle Scholar
  92. Silveira G, Freitas R, Tosta TA, Rabelo L, Gaglianone M, Augusto S (2015) The orchid bee fauna in the Brazilian savanna: do forest formations contribute to higher species diversity?. Apidologie 46:197–208CrossRefGoogle Scholar
  93. Soro A, Field J, Bridge C, Cardinal SC, Paxton RJ (2010) Genetic differentiation across the social transition in a socially polymorphic sweat bee, Halictus rubicundus. Mol Ecol 19:3351–3363PubMedCrossRefGoogle Scholar
  94. Souza RO, Cervini M, Del Lama A, Paxton RJ (2007) Microsatellite loci for euglossine bees (Hymenoptera: Apidae). Mol Ecol Resour 7:1352–1356CrossRefGoogle Scholar
  95. Souza RO et al (2010) Conservation genetics of neotropical pollinators revisited: microsatellite analysis suggests that diploid males are rare in orchid bees. Evolution 64:3318–3326. doi: 10.1111/j.1558-5646.2010.01052.x PubMedCrossRefGoogle Scholar
  96. Suni SS (2016) Population genetics of Euglossa imperialis reveals low genetic diversity and restricted dispersal over a fragmented area. In review, this special issueGoogle Scholar
  97. Szabo BJ, Ward WC, Weidie AE, Brady MJ et al (1978) Age and magnitude of the late Pleistocene sea-level rise on the eastern Yucatan Peninsula. Geology 6:713–715CrossRefGoogle Scholar
  98. Takahashi NC, Peruquetti RC, Del Lama MA, Campos LAdO (2001) A reanalysis of diploid male frequencies in euglossine bees (Hymenoptera: Apidae). Evolution 55:1897–1899. doi: 10.1111/j.0014-3820.2001.tb00839.x PubMedCrossRefGoogle Scholar
  99. Turner BL II, Villar SC, Foster D, Geoghegan J, Keys E et al (2001) Deforestation in the southern Yucatán peninsular region: an integrative approach. Forest Ecol Manag 154:353–370CrossRefGoogle Scholar
  100. Tzika AC et al (2008) Population genetics of Galápagos land iguana (genus Conolophus) remnant populations. Mol Ecol 17:4943–4952. doi: 10.1111/j.1365-294X.2008.03967.x PubMedCrossRefGoogle Scholar
  101. van de Zande L, Verhulst EC (2014) Genomic imprinting and maternal effect genes in haplodiploid sex determination. Sex Dev 8:74–82PubMedCrossRefGoogle Scholar
  102. van Wilgenburg E, Driessen G, Beukeboom L (2006) Single locus complementary sex determination in Hymenoptera: an “unintelligent” design? Front Zool 3:1–15PubMedPubMedCentralCrossRefGoogle Scholar
  103. Vanbergen AJ, Initiative IP (2013) Threats to an ecosystem service: pressures on pollinators. Front Ecol Environ. doi: 10.1890/120126 Google Scholar
  104. Verhulst EC, Beukeboom LW, van de Zande L (2010) Maternal control of haplodiploid sex determination in the wasp Nasonia. Science 328:620–623PubMedCrossRefGoogle Scholar
  105. Villanueva-Gutierrez R, Quesada-Euan J, Elzt T (2013) Pollen diets of two sibling orchid bee species, Euglossa, in Yucatán, southern Mexico. Apidologie 44:440–446CrossRefGoogle Scholar
  106. Wang IJ (2013) Examining the full effects of landscape heterogeneity on spatial genetic variation: a multiple matrix regression approach for quantifying geographic and ecological isolation. Evolution 67:3403–3411PubMedCrossRefGoogle Scholar
  107. Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370CrossRefGoogle Scholar
  108. Yokoyama S, Nei M (1979) Population dynamics of sex-determining alleles in honey bees and self-incompatibility alleles in plants. Genetics 91:609–626PubMedPubMedCentralGoogle Scholar
  109. Zayed A (2004) Effective population size in Hymenoptera with complimentary sex determination. Heredity 93:627–630PubMedCrossRefGoogle Scholar
  110. Zayed A (2009) Bee genetics and conservation. Apidologie 40:237–262CrossRefGoogle Scholar
  111. Zayed A, Packer L (2005) Complementary sex determination substantially increases extinction proneness of haplodiploid populations. Proc Natl Acad Sci USA 102:10742–10746PubMedPubMedCentralCrossRefGoogle Scholar
  112. Zayed A, Roubik DW, Packer L (2004) Use of diploid male frequency data as an indicator of pollinator decline. P R Soc Lond B 271:S9–S12. doi: 10.1098/rsbl.2003.0109 CrossRefGoogle Scholar
  113. Zimmermann Y, Schorkopf DLP, Moritz RFA, Pemberton RW, Quezada-Euan JJG, Eltz T (2011) Population genetic structure of orchid bees (Euglossini) in anthropogenically altered landscapes. Conserv Genet 12:1183–1194. doi: 10.1007/s10592-011-0221-1 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.General Zoology, Institute for BiologyMartin-Luther-University Halle-WittenbergHalle (Saale)Germany
  2. 2.Departamento de Apicultura TropicalUniversidad Autónoma de YucatánMéridaMexico
  3. 3.Molecular EcologyMartin-Luther-University Halle-WittenbergHalleGermany

Personalised recommendations