Conservation Genetics

, Volume 18, Issue 3, pp 689–700 | Cite as

Quantitative conservation genetics of wild and managed bees

  • Sheina Koffler
  • Astrid de Matos Peixoto Kleinert
  • Rodolfo Jaffé
Research Article

Abstract

Quantitative genetic traits provide insights into the evolutionary potential of populations, as heritability estimates measure the population’s ability to respond to global changes. Although wild and managed bees are increasingly threatened by the degradation of natural habitats and climate change, risking plant biodiversity and agriculture production, no study has yet performed a systematic review of heritability estimates across the group. Here we help fill this knowledge gap, gathering all available heritability estimates for ants, bees, and wasps, evaluating which factors affect these estimates and assessing the reported genetic correlations between traits. Using a model selection approach to analyze a dataset of more than 800 heritability estimates, we found that heritability is influenced by trait type, with morphological traits exhibiting the highest heritability estimates, and defense and metabolism-related traits showing the lowest estimates. Study system, sociality degree, experimental design, estimation type (narrow or broad-sense heritability), and sample size were not found to affect heritability estimates. Results remained unaltered when correcting for phylogenetic inertia, and when analyzing social bees separately. Genetic correlations between honeybee traits revealed both positive coefficients, usually for traits in the same category, and negative coefficients, suggesting trade-offs among other traits. We discuss these findings and highlight the importance of maintaining genetic variance in fitness-related traits. Our study shows the importance of considering heritability estimates and genetic correlations when designing breeding and conservation programs. We hope this meta-analysis helps identify sustainable breeding approaches and conservation strategies that help safeguard the evolutionary potential of wild and managed bees.

Keywords

Bee breeding Conservation Genetic correlations Heritability Hymenoptera 

Notes

Acknowledgements

We would like to thank the Shalene Jha, Margarita Lopez-Uribe, and Antonella Soro for organizing this special issue on bee conservation genetics. We also thank Dr. Tiago B. Quental for the interesting discussion on phylogenetic analyses and three anonymous referees for providing constructive suggestions to our manuscript. Funding was provided by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (SK), and Conselho Nacional de Desenvolvimento Científico e Tecnológico (RJ, Grant Number 478982/2013-5).

Supplementary material

10592_2016_904_MOESM1_ESM.csv (15 kb)
Supplementary material 1 (CSV 14 kb)
10592_2016_904_MOESM2_ESM.csv (94 kb)
Supplementary material 2 (CSV 94 kb)
10592_2016_904_MOESM3_ESM.csv (53 kb)
Supplementary material 3 (CSV 52 kb)
10592_2016_904_MOESM4_ESM.csv (73 kb)
Supplementary material 4 (CSV 72 kb)
10592_2016_904_MOESM5_ESM.r (3 kb)
Supplementary material 5 (R 3 kb)
10592_2016_904_MOESM6_ESM.r (7 kb)
Supplementary material 6 (R 6 kb)
10592_2016_904_MOESM7_ESM.docx (647 kb)
Supplementary material 7 (DOCX 646 kb)
10592_2016_904_MOESM8_ESM.r (1 kb)
Supplementary material 8 (R 1 kb)

References

  1. Allendorf F, Luikart G, Aitken SN (2012) Conservation and the genetics of populations. Wiley-Blackwell, West SussexGoogle Scholar
  2. Bates D, Maechler M, Bolker B, Walker S (2014) lme4: linear mixed-effects models using Eigen and S4Google Scholar
  3. Bennett D, Hoffmann A (1998) Effects of size and fluctuating asymmetry on field fitness of the parasitoid Trichogramma carverae (Hymenoptera: Trichogrammatidae). J Anim Ecol 67:580–591CrossRefGoogle Scholar
  4. Bienefeld K, Pirchner F (1990) Heritabilities for several colony traits in the honeybee (Apis mellifera carnica). Apidologie 21:175–183CrossRefGoogle Scholar
  5. Bienefeld K, Ehrhardt K, Reinhardt F (2007) Genetic evaluation in the honey bee considering queen and worker effects—a BLUP-animal model approach. Apidologie 38:77–85. doi:10.1051/apido:2006050 CrossRefGoogle Scholar
  6. Biesmeijer J, Roberts S (2006) Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science 313(5785):351–354CrossRefPubMedGoogle Scholar
  7. Brascamp EW, Willam A, Boigenzahn C et al (2016) Heritabilities and genetic correlations for honey yield, gentleness, calmness and swarming behaviour in Austrian honey bees. Apidologie. doi:10.1007/s13592-016-0427-9 Google Scholar
  8. Brown JC, Albrecht C (2001) The effect of tropical deforestation on stingless bees of the genus Melipona (Insecta: Hymenoptera: Apidae: Meliponini) in central Rondonia, Brazil. J Biogeogr 28:623–634CrossRefGoogle Scholar
  9. Brown MJF, Paxton RJ (2009) The conservation of bees: a global perspective. Apidologie 40:410–416. doi:10.1051/apido/2009019 CrossRefGoogle Scholar
  10. Büchler R, Costa C, Hatjina F (2014) The influence of genetic origin and its interaction with environmental effects on the survival of Apis mellifera L. colonies in Europe. J Agric Res 53(2):205–214Google Scholar
  11. Byatt MA, Chapman NC, Latty T, Oldroyd BP (2015) The genetic consequences of the anthropogenic movement of social bees. Insectes Soc 63(1):15–24. doi:10.1007/s00040-015-0441-3 CrossRefGoogle Scholar
  12. Cameron SA, Hines HM, Williams PH (2007) A comprehensive phylogeny of the bumble bees (Bombus). Biol J Linn Soc 91:161–188. doi:10.1111/j.1095-8312.2007.00784.x CrossRefGoogle Scholar
  13. Chapman NC, Lim J, Oldroyd BP (2008) Population genetics of commercial and feral honey bees in Western Australia. J Econ Entomol 101:272–277CrossRefPubMedGoogle Scholar
  14. Charmantier A, Garant D (2005) Environmental quality and evolutionary potential: lessons from wild populations. Proc Biol Sci 272:1415–1425. doi:10.1098/rspb.2005.3117 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Collins AM, Rinderer TE, Harbo JR, Brown MA (1984) Heritabilities and correlations for several characters in the honey bee. J Hered 75:135–140CrossRefGoogle Scholar
  16. Conte YL, Bruchou C, Benhamouda K (1994) Heritability of the queen brood post-capping stage duration in Apis mellifera mellifera L. Apidologie 25:513CrossRefGoogle Scholar
  17. Costa-Maia FM, Toledo VDAAD, Martins EN et al (2011) Estimates of covariance components for hygienic behavior in Africanized honeybees (Apis mellifera). Rev Bras Zootec 40:1909–1916. doi:10.1590/S1516-35982011000900010 CrossRefGoogle Scholar
  18. Danforth BN, Cardinal S, Praz C et al (2013) The impact of molecular data on our understanding of bee phylogeny and evolution. Ann Rev Entamol 58:57–78CrossRefGoogle Scholar
  19. Davis ES, Murray TE, Fitzpatrick N et al (2010) Landscape effects on extremely fragmented populations of a rare solitary bee, Colletes floralis. Mol Ecol 19:4922–4935. doi:10.1111/j.1365-294X.2010.04868.x CrossRefPubMedGoogle Scholar
  20. De la Rúa P, Jaffé R, Dall’Olio R et al (2009) Biodiversity, conservation and current threats to European honeybees. Apidologie 40:263–284. doi:10.1051/apido/2009027 CrossRefGoogle Scholar
  21. Dowton M, Austin A (1994) Molecular phylogeny of the insect order Hymenoptera: Apocritan relationships. Proc Natl Acad Sci USA 91(21):9911–9915CrossRefPubMedPubMedCentralGoogle Scholar
  22. Evans JD, Schwarz RS, Chen YP et al (2013) Standard methods for molecular research in Apis mellifera. J Apic Res. doi:10.3896/IBRA.1.52.4.11 Google Scholar
  23. Falconer DS, Mackay TFC (1996) Introduction to quantitative genetics, 4th edn. Longman, InglaterraGoogle Scholar
  24. Fjerdingstad EJ (2005) Control of body size of Lasius niger ant sexuals–worker interests, genes and environment. Mol Ecol 14:3123–3132. doi:10.1111/j.1365-294X.2005.02648.x CrossRefPubMedGoogle Scholar
  25. Frankham R, Briscoe DA, Ballou JD (2002) Introduction to conservation genetics. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  26. Gallai N, Salles J-M, Settele J, Vaissière BE (2009) Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecol Econ 68:810–821CrossRefGoogle Scholar
  27. Giannini TC, Boff S, Cordeiro GD et al (2014) Crop pollinators in Brazil: a review of reported interactions. Apidologie. doi:10.1007/s13592-014-0316-z Google Scholar
  28. Goulson D, Nicholls E, Botías C, Rotheray EL (2015) Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science. doi:10.1126/science.1255957 Google Scholar
  29. Gupta P, Reinsch N, Spötter A et al (2013) Accuracy of the unified approach in maternally influenced traits–illustrated by a simulation study in the honey bee (Apis mellifera). BMC Genet 14:36. doi:10.1186/1471-2156-14-36 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Harbo JR (1992) Breeding honey bees (Hymenoptera: Apidae) for more rapid development of larvae and pupae. J Econ Entomol 85:2125–2130. doi:10.1093/jee/85.6.2125 CrossRefGoogle Scholar
  31. Harbo JR, Harris JW (1999) Heritability in honey bees (Hymenoptera: Apidae) of characteristics associated with resistance to Varroa jacobsoni (Mesostigmata: Varroidae). J Econ Entomol 92:261–265. doi:10.1093/jee/92.2.261 CrossRefGoogle Scholar
  32. Harmon LJ, Weir JT, Brock CD et al (2008) GEIGER: investigating evolutionary radiations. Bioinformatics 24:129–131. doi:10.1093/bioinformatics/btm538 CrossRefPubMedGoogle Scholar
  33. Hendry AP, Letcher BH, Gries G (2003) Estimating natural selection acting on stream-dwelling Atlantic Salmon: implications for the restoration of extirpated populations. Conserv Biol 17:795–805. doi:10.1046/j.1523-1739.2003.02075.x CrossRefGoogle Scholar
  34. Hoffman EA, Kovacs JL, Goodisman MAD (2008) Genetic structure and breeding system in a social wasp and its social parasite. BMC Evol Biol 8:13. doi:10.1186/1471-2148-8-239 CrossRefGoogle Scholar
  35. Hughes WOH, Oldroyd BP, Beekman M, Ratnieks FLW (2008) Ancestral monogamy shows kin selection is key to the evolution of eusociality. Science 320:1213–1216. doi:10.1126/science.1156108 CrossRefPubMedGoogle Scholar
  36. Jaffé R, Dietemann V, Allsopp MH et al (2010) Estimating the density of honeybee colonies across their natural range to fill the gap in pollinator decline censuses. Conserv Biol 24:583–593. doi:10.1111/j.1523-1739.2009.01331.x CrossRefPubMedGoogle Scholar
  37. Jaffé R, Pope N, Carvalho AT et al (2015) Bees for development: Brazilian survey reveals how to optimize stingless beekeeping. PLoS ONE 10(3):e0121157CrossRefPubMedPubMedCentralGoogle Scholar
  38. Jensen H, Szulkin M, Slate J (2014) Molecular quantitative genetics. Oxford University Press, Oxford, pp 209–227Google Scholar
  39. Jha S (2015) Contemporary human-altered landscapes and oceanic barriers reduce bumble bee gene flow. Mol Ecol 24:993–1006. doi:10.1111/mec.13090 CrossRefPubMedGoogle Scholar
  40. Jha S, Kremen C (2013) Urban land use limits regional bumble bee gene flow. Mol Ecol. doi:10.1111/mec.12275 PubMedGoogle Scholar
  41. Kennedy CM, Lonsdorf E, Neel MC et al (2013) A global quantitative synthesis of local and landscape effects on wild bee pollinators in agroecosystems. Ecol Lett 16:584–599. doi:10.1111/ele.12082 CrossRefPubMedGoogle Scholar
  42. Koffler S, Menezes C, Menezes PR et al (2015) Temporal variation in honey production by the stingless bee Melipona subnitida (Hymenoptera: Apidae): long-term management reveals its potential as a commercial species in Northeastern Brazil. J Econ Entomol 108:858–867. doi:10.1093/jee/tov055 CrossRefPubMedGoogle Scholar
  43. Kovacs JL, Hoffman EA, Marriner SM et al (2009) Environmental and genetic influences on queen and worker body size in the social wasp Vespula maculifrons. Insectes Soc 57:53–65. doi:10.1007/s00040-009-0050-0 CrossRefGoogle Scholar
  44. Liu FH, Smith SM (2000) Estimating quantitative genetic parameters in haplodiploid organisms. Heredity (Edinb) 85:373–382CrossRefGoogle Scholar
  45. Meixner M, Costa C, Kryger P (2010) Conserving diversity and vitality for honey bee breeding. J Agric Res 49(1):85–92Google Scholar
  46. Moritz RFA (1985) Heritability of the postcapping stage in Apis mellifera and its relation to varroatosis resistance. J Hered 76:267–270CrossRefGoogle Scholar
  47. Mousseau T, Roff D (1987) Natural selection and the heritability of fitness components. Heredity (Edinb) 59:181–197CrossRefGoogle Scholar
  48. Munro JB, Heraty JM, Burks RA et al (2011) A molecular phylogeny of the chalcidoidea (Hymenoptera). PLoS ONE 6:e27023. doi:10.1371/journal.pone.0027023 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Niño EL, Cameron Jasper W (2015) Improving the future of honey bee breeding programs by employing recent scientific advances. Curr Opin Insect Sci 10:163–169. doi:10.1016/j.cois.2015.05.005 CrossRefGoogle Scholar
  50. Nunes-Silva P, Hrncir M, Silva C et al (2013) Stingless bees, Melipona fasciculata, as efficient pollinators of eggplant (Solanum melongena) in greenhouses. Apidologie. doi:10.1007/s13592-013-0204-y Google Scholar
  51. Oldroyd B, Moran C (1983) Heritability of worker characters in the honeybee (Apis mellifera). Aust J Biol Sci 36(3):323–332CrossRefGoogle Scholar
  52. Oldroyd B, Rinderer T, Buco S (1991) Heritability of morphological characters used to distinguish European and Africanized honeybees. Theor Appl Genet 82:499–504. doi:10.1007/BF00588605 CrossRefPubMedGoogle Scholar
  53. Ollerton J, Winfree R, Tarrant S (2011) How many flowering plants are pollinated by animals? Oikos 120:321–326. doi:10.1111/j.1600-0706.2010.18644.x CrossRefGoogle Scholar
  54. Oxley P, Oldroyd B (2010) The genetic architecture of honeybee breeding. Adv Insect Physiol 39:83CrossRefGoogle Scholar
  55. Pagel M (1999) Inferring the historical patterns of biological evolution. Nature 401:877–884CrossRefPubMedGoogle Scholar
  56. Paradis E, Claude J, Strimmer K (2004) APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20:289–290. doi:10.1093/bioinformatics/btg412 CrossRefPubMedGoogle Scholar
  57. Pinheiro J, Bates D, DebRoy S, et al (2016) nlme: linear and nonlinear mixed effects modelsGoogle Scholar
  58. Postma E (2014) Four decades of estimating heritabilities in wild vertebrate populations: improved methods, more data, better estimates. Oxford University Press, OxfordGoogle Scholar
  59. Potts SG, Biesmeijer JC, Kremen C et al (2010) Global pollinator declines: trends, impacts and drivers. Trends Ecol Evol 25:345–353CrossRefPubMedGoogle Scholar
  60. Quicke DLJ, van Achterberg C (1900) Phylogeny of the subfamilies of Draconian. Ichneumonoidea, HymenopteraGoogle Scholar
  61. Reed D, Frankham R (2001) How closely correlated are molecular and quantitative measures of genetic variation? a meta-analysis. Evolution 55(6):1095–1103CrossRefPubMedGoogle Scholar
  62. Revell LJ (2012) phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol Evol 3:217–223. doi:10.1111/j.2041-210X.2011.00169.x CrossRefGoogle Scholar
  63. Rinderer T (1977) Measuring the heritability of characters of honeybees. J Apic Res 16:95–98CrossRefGoogle Scholar
  64. Sachman-Ruiz B, Narváez-Padilla V, Reynaud E (2015) Commercial Bombus impatiens as reservoirs of emerging infectious diseases in central México. Biol Invasions 17:2043–2053. doi:10.1007/s10530-015-0859-6 CrossRefGoogle Scholar
  65. Stephens P, Sutherland W (1999) Consequences of the Allee effect for behaviour, ecology and conservation. Trends Ecol Evol 14(10):401–405CrossRefPubMedGoogle Scholar
  66. Stürup M, den Boer S, Nash D et al (2011) Variation in male body size and reproductive allocation in the leafcutter ant Atta colombica: estimating variance components and possible trade-offs. Insectes Soc 58:47–55. doi:10.1007/s00040-010-0115-0 CrossRefGoogle Scholar
  67. Tepedino V, Thompson R, Torchio P (1984) Heritability for size in the megachilid bee Osmia lignaria propinqua Cresson. Apidologie 15:83–88CrossRefGoogle Scholar
  68. Visscher PM, Hill WG, Wray NR (2008) Heritability in the genomics era—concepts and misconceptions. Nat Rev Genet 9:255–266CrossRefPubMedGoogle Scholar
  69. Wickham H (2009) ggplot2: elegant graphics for data analysis. Springer, New YorkCrossRefGoogle Scholar
  70. Wielewski P, Toledo VA, Martins EN et al (2014) Relationship Between Hygienic Behavior and Varroa destructor Mites in Colonies Producing Honey or Royal Jelly. Sociobiology 59:251–274CrossRefGoogle Scholar
  71. Zayed A (2009) Bee genetics and conservation. Apidologie 40:237–262CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Sheina Koffler
    • 1
  • Astrid de Matos Peixoto Kleinert
    • 1
  • Rodolfo Jaffé
    • 1
    • 2
  1. 1.Department of Ecology, Institute of BiosciencesUniversity of São PauloSão PauloBrazil
  2. 2.Vale Institute of Technology- Sustainable DevelopmentBelémBrazil

Personalised recommendations