Advertisement

Conservation Genetics

, Volume 18, Issue 3, pp 713–729 | Cite as

Bee conservation in the age of genomics

  • Jeffrey D. Lozier
  • Amro Zayed
Research Article

Abstract

Many wild and managed bee pollinators have experienced population declines over the past several decades, and molecular and population genetic tools have been valuable in understanding conservation threats across the bee tree of life. Emerging genomic tools have the potential to improve classical applications of conservation genetics, such as assessing species status, and quantifying genetic diversity, gene flow and effective population sizes. Genomic tools can also revolutionize novel research in bee conservation and management, including the identification of loci underlying adaptive and economically desirable traits, such as those involved in disease susceptibility, responses to multiple environmental stressors, and even discovering and understanding the hidden diversity of beneficial microorganisms associated with bees. In this perspective, we provide a survey of some of the ways genomic tools can be applied to bee conservation to bridge the gap between basic and applied genomics research.

Keywords

Bees Pollination Population genetics Transcriptomics Genome wide association mapping Ecological genomics 

Notes

Acknowledgments

We thank the Natural Sciences and Engineering Council of Canada (Discovery grant to AZ) and the United States National Science Foundation Division of Environmental Biology (DEB-1457645 to JDL) for funding ongoing work relating to conservation genomics of bees. We thank S Jha, M Lopez-Uribe, and A Soro for organizing this special issue on Bee Conservation Genetics and the 2015 Ecological Society of America symposium bearing the same title.

References

  1. Ali OA, ORourke SM, Amish SJ et al (2016) RAD capture (Rapture): flexible and efficient sequence-based genotyping. Genetics 202:389–400. doi: 10.1534/genetics.115.183665 PubMedCrossRefGoogle Scholar
  2. Allendorf FW, Hohenlohe PA, Luikart G (2010) Genomics and the future of conservation genetics. Nat Rev Genet 11:697–709. doi: 10.1038/nrg2844 PubMedCrossRefGoogle Scholar
  3. Allendorf FW, Luikart GH, Aitken SN (2013) Conservation and the genetics of populations. Wiley, New YorkGoogle Scholar
  4. Amos W, Balmford A (2001) When does conservation genetics matter? Heredity 87:257–265PubMedCrossRefGoogle Scholar
  5. Andrews KR, Luikart G (2014) Recent novel approaches for population genomics data analysis. Mol Ecol 23:1661–1667. doi: 10.1111/mec.12686 PubMedCrossRefGoogle Scholar
  6. Andrews KR, Hohenlohe PA, Miller (2014) Trade-offs and utility of alternative RADseq methods: reply to Puritz et al. Mol Ecol 23:5943–5946. doi: 10.1111/mec.12964 PubMedCrossRefGoogle Scholar
  7. Andrews KR, Good JM, Miller MR et al (2016) Harnessing the power of RADseq for ecological and evolutionary genomics. Nat Rev Genet 17:81–92. doi: 10.1038/nrg.2015.28 PubMedPubMedCentralCrossRefGoogle Scholar
  8. Arnold B, Corbett-Detig RB, Hartl D, Bomblies K (2013) RADseq underestimates diversity and introduces genealogical biases due to nonrandom haplotype sampling. Mol Ecol 22:3179–3190. doi: 10.1111/mec.12276 PubMedCrossRefGoogle Scholar
  9. Aufauvre J, Misme-Aucouturier B, Viguès B et al (2014) Transcriptome analyses of the honeybee response to Nosema ceranae and insecticides. PLoS One. doi: 10.1371/journal.pone.0091686 PubMedPubMedCentralGoogle Scholar
  10. Avise JC (2009) Phylogeography: retrospect and prospect. J Biogeogr 36:3–15. doi: 10.1111/j.1365-2699.2008.02032.x CrossRefGoogle Scholar
  11. Barribeau SM, Sadd BM, du Plessis L et al (2015) A depauperate immune repertoire precedes evolution of sociality in bees. Genome Biol 16:83. doi: 10.1186/s13059-015-0628-y PubMedPubMedCentralCrossRefGoogle Scholar
  12. Biesmeijer JC, Roberts SPM, Reemer M et al (2006) Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science 313:351–354. doi: 10.1126/science.1127863 PubMedCrossRefGoogle Scholar
  13. Boff S, Soro A, Paxton RJ, Alves-dos-Santos I (2014) Island isolation reduces genetic diversity and connectivity but does not significantly elevate diploid male production in a neotropical orchid bee. Conserv Genet 15:1123–1135. doi: 10.1007/s10592-014-0605-0 CrossRefGoogle Scholar
  14. Brown MJF, Paxton RJ (2009) The conservation of bees: a global perspective. Apidologie 40:410–416. doi: 10.1051/apido/2009019 CrossRefGoogle Scholar
  15. Bryant D, Bouckaert R, Felsenstein J et al (2012) Inferring species trees directly from biallelic genetic markers: bypassing gene trees in a full coalescent analysis. Mol Biol Evol 29:1917–1932. doi: 10.1093/molbev/mss086 PubMedPubMedCentralCrossRefGoogle Scholar
  16. Byatt MA, Chapman NC, Latty T, Oldroyd BP (2016) The genetic consequences of the anthropogenic movement of social bees. Insectes Soc 63:15–24. doi: 10.1007/s00040-015-0441-3 CrossRefGoogle Scholar
  17. Cameron SA, Lozier JD, Strange JP et al (2011) Patterns of widespread decline in North American bumble bees. Proc Natl Acad Sci USA 108:662–667. doi: 10.1073/pnas.1014743108 PubMedPubMedCentralCrossRefGoogle Scholar
  18. Cameron SA, Lim HC, Lozier JD et al (2016) Test of the invasive pathogen hypothesis of bumble bee decline in North America. Proc Natl Acad Sci USA 113:4386–4391. doi: 10.1073/pnas.1525266113 PubMedPubMedCentralCrossRefGoogle Scholar
  19. Cane JH, Minckley RL, Kervin LJ et al (2006) Complex responses within a desert bee guild (Hymenoptera: Apiformes) to urban habitat fragmentation. Ecol Appl 16:632–644PubMedCrossRefGoogle Scholar
  20. Catchen J, Hohenlohe PA, Bassham S et al (2013) Stacks: an analysis tool set for population genomics. Mol Ecol 22:3124–3140. doi: 10.1111/mec.12354 PubMedPubMedCentralCrossRefGoogle Scholar
  21. Chapman RE, Bourke AFG (2001) The influence of sociality on the conservation biology of social insects. Ecol Lett 4:650–662. doi: 10.1046/j.1461-0248.2001.00253.x CrossRefGoogle Scholar
  22. Chapman NC, Harpur BA, Lim J et al (2015) A SNP test to identify Africanized honeybees via proportion of “African” ancestry. Mol Ecol Resour 15:1346–1355. doi: 10.1111/1755-0998.12411 PubMedCrossRefGoogle Scholar
  23. Charlesworth B (2009) Fundamental concepts in genetics: effective population size and patterns of molecular evolution and variation. Nat Rev Genet 10:195–205. doi: 10.1038/nrg2526 PubMedCrossRefGoogle Scholar
  24. Chen YP, Pettis JS, Zhao Y et al (2013) Genome sequencing and comparative genomics of honey bee microsporidia, Nosema apis reveal novel insights into host-parasite interactions. BMC Genom 14:451. doi: 10.1186/1471-2164-14-451 CrossRefGoogle Scholar
  25. Chifman J, Kubatko L (2014) Quartet inference from SNP data under the coalescent model. Bioinformatics 30:3317–3324. doi: 10.1093/bioinformatics/btu530 PubMedPubMedCentralCrossRefGoogle Scholar
  26. Coissac E, Hollingsworth PM, Lavergne S, Taberlet P (2016) From barcodes to genomes: extending the concept of DNA barcoding. Mol Ecol 25:1423–1428. doi: 10.1111/mec.13549 PubMedCrossRefGoogle Scholar
  27. Colla SR, Packer L (2008) Evidence for decline in eastern North American bumblebees (Hymenoptera: Apidae), with special focus on Bombus affinis Cresson. Biodivers Conserv 17:1379–1391. doi: 10.1007/s10531-008-9340-5 CrossRefGoogle Scholar
  28. Colla SR, Otterstatter M, Gegear R, Thomson J (2006) Plight of the bumble bee: pathogen spillover from commercial to wild populations. Biol Conserv 129:461–467. doi: 10.1016/j.biocon.2005.11.013 CrossRefGoogle Scholar
  29. Cornman RS, Chen YP, Schatz MC et al (2009) Genomic analyses of the microsporidian Nosema ceranae, an emergent pathogen of honey bees. PLoS Pathog 5:e1000466. doi: 10.1371/journal.ppat.1000466 PubMedPubMedCentralCrossRefGoogle Scholar
  30. Cornman RS, Boncristiani H, Dainat B et al (2013a) Population-genomic variation within RNA viruses of the Western honey bee, Apis mellifera, inferred from deep sequencing. BMC Genom 14:154. doi: 10.1186/1471-2164-14-154 CrossRefGoogle Scholar
  31. Cornman RS, Lopez D, Evans JD (2013b) Transcriptional response of honey bee larvae infected with the bacterial pathogen Paenibacillus larvae. PLoS One. doi: 10.1371/journal.pone.0065424 PubMedPubMedCentralGoogle Scholar
  32. Cox-Foster DL, Conlan S, Holmes EC et al (2007) A metagenomic survey of microbes in honey bee colony collapse disorder. Science 318:283–287. doi: 10.1126/science.1146498 PubMedCrossRefGoogle Scholar
  33. Danforth BN (2007) Bees. Curr Biol 17:R156–R161. doi: 10.1016/j.cub.2007.01.025 PubMedCrossRefGoogle Scholar
  34. Danforth BN, Ji S, Ballard L (2003) Gene flow and population structure in an oligolectic desert bee, Macrotera (Macroteropsis) portalis (Hymenoptera: Andrenidae). J Kans Entomol Soc 76:221–235Google Scholar
  35. Danforth BN, Cardinal S, Praz C et al (2013) The impact of molecular data on our understanding of bee phylogeny and evolution. Annu Rev Entomol 58:57–78. doi: 10.1146/annurev-ento-120811-153633 PubMedCrossRefGoogle Scholar
  36. Darvill B, O’Connor S, Lye GC et al (2010) Cryptic differences in dispersal lead to differential sensitivity to habitat fragmentation in two bumblebee species. Mol Ecol 19:53–63. doi: 10.1111/j.1365-294X.2009.04423.x PubMedCrossRefGoogle Scholar
  37. Davey JW, Blaxter ML (2010) RADSeq: next-generation population genetics. Brief Funct Genom 9:416–423. doi: 10.1093/bfgp/elq031 CrossRefGoogle Scholar
  38. Davey J, Hohenlohe P, Etter P (2011) Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat Rev Genet 12:499–510. doi: 10.1038/nrg3012 PubMedCrossRefGoogle Scholar
  39. Davey JW, Cezard T, Fuentes-Utrilla P et al (2013) Special features of RAD sequencing data: implications for genotyping. Mol Ecol 22:3151–3164. doi: 10.1111/mec.12084 PubMedCrossRefGoogle Scholar
  40. De la Rúa P, Jaffé R, Dall’Olio R et al (2009) Biodiversity, conservation and current threats to European honeybees. Apidologie 40:263–284. doi: 10.1051/apido/2009027 CrossRefGoogle Scholar
  41. De La Rúa P, Jaffé R, Muñoz I et al (2013) Conserving genetic diversity in the honeybee: comments on Harpur et al. (2012). Mol Ecol 22:3208–3210PubMedCrossRefGoogle Scholar
  42. De Wit P, Pespeni MH, Palumbi SR (2015) SNP genotyping and population genomics from expressed sequences—current advances and future possibilities. Mol Ecol 24:2310–2323. doi: 10.1111/mec.13165 PubMedCrossRefGoogle Scholar
  43. Delaney DA, Meixner MD, Schiff NM, Sheppard WS (2009) Genetic characterization of commercial honey bee (Hymenoptera: Apidae) populations in the United States by using mitochondrial and microsatellite markers. Ann Entomol Soc Am 102:666–673. doi: 10.1603/008.102.0411 CrossRefGoogle Scholar
  44. Dellicour S, Kastally C, Varela S et al (2016) Ecological niche modelling and coalescent simulations to explore the recent geographic range history of five widespread bumblebee species in Europe. J Biogeogr. doi: 10.1111/jbi.12748 in press Google Scholar
  45. Duennes MA, Lozier JD, Hines HM, Cameron SA (2012) Geographical patterns of genetic divergence in the widespread Mesoamerican bumble bee Bombus ephippiatus (Hymenoptera: Apidae). Mol Phylogenet Evol 64:219–231. doi: 10.1016/j.ympev.2012.03.018 PubMedCrossRefGoogle Scholar
  46. Eisenstein M (2015) Pesticides: seeking answers amid a toxic debate. Nature 521:S52–S55. doi: 10.1038/521S52a PubMedCrossRefGoogle Scholar
  47. Ellegren H (2000) Heterogeneous mutation processes in human microsatellite DNA sequences. Nat Genet 24:400–402. doi: 10.1038/74249 PubMedCrossRefGoogle Scholar
  48. Ellegren H (2004) Microsatellites: simple sequences with complex evolution. Nat Rev Genet 5:435–445. doi: 10.1038/nrg1348 PubMedCrossRefGoogle Scholar
  49. Engel P, Martinson VG, Moran NA (2012) Functional diversity within the simple gut microbiota of the honey bee. Proc Natl Acad Sci USA 109:11002–11007. doi: 10.1073/pnas.1202970109 PubMedPubMedCentralCrossRefGoogle Scholar
  50. Epps CW, Keyghobadi N (2015) Landscape genetics in a changing world: disentangling historical and contemporary influences and inferring change. Mol Ecol 24:6021–6040. doi: 10.1111/mec.13454 PubMedCrossRefGoogle Scholar
  51. Etter PD, Bassham S, Hohenlohe PA et al (2011) SNP discovery and genotyping for evolutionary genetics using RAD sequencing. Methods Mol Biol 772:157–178. doi: 10.1007/978-1-61779-228-1_9 PubMedPubMedCentralCrossRefGoogle Scholar
  52. Excoffier L, Dupanloup I, Huerta-Sánchez E et al (2013) Robust demographic inference from genomic and SNP data. PLoS Genet 9:e1003905. doi: 10.1371/journal.pgen.1003905 PubMedPubMedCentralCrossRefGoogle Scholar
  53. Fabian DK, Kapun M, Nolte V et al (2012) Genome-wide patterns of latitudinal differentiation among populations of Drosophila melanogaster from North America. Mol Ecol 21:4748–4769. doi: 10.1111/j.1365-294X.2012.05731.x PubMedPubMedCentralCrossRefGoogle Scholar
  54. Faircloth BC, McCormack JE, Crawford NG et al (2012) Ultraconserved elements anchor thousands of genetic markers spanning multiple evolutionary timescales. Syst Biol 61:717–726. doi: 10.1093/sysbio/sys004 PubMedCrossRefGoogle Scholar
  55. Faircloth BC, Branstetter MG, White ND, Brady SG (2015) Target enrichment of ultraconserved elements from arthropods provides a genomic perspective on relationships among Hymenoptera. Mol Ecol Resour 15:489–501. doi: 10.1111/1755-0998.12328 PubMedCrossRefGoogle Scholar
  56. Frankham R (1996) Relationship of genetic variation to population size in wildlife. Conserv Biol 10:1500–1508. doi: 10.1046/j.1523-1739.1996.10061500.x CrossRefGoogle Scholar
  57. Frankham R (2005) Genetics and extinction. Biol Conserv 126:131–140. doi: 10.1016/j.biocon.2005.05.002 CrossRefGoogle Scholar
  58. Frankham R (2015) Genetic rescue of small inbred populations: meta-analysis reveals large and consistent benefits of gene flow. Mol Ecol 24:2610–2618. doi: 10.1111/mec.13139 PubMedCrossRefGoogle Scholar
  59. Fujita MK, Leaché AD, Burbrink FT et al (2012) Coalescent-based species delimitation in an integrative taxonomy. Trends Ecol Evol 27:480–488. doi: 10.1016/j.tree.2012.04.012 PubMedCrossRefGoogle Scholar
  60. Fuller ZL, Niño EL, Patch HM et al (2015) Genome-wide analysis of signatures of selection in populations of African honey bees (Apis mellifera) using new web-based tools. BMC Genom 16:518. doi: 10.1186/s12864-015-1712-0 CrossRefGoogle Scholar
  61. Funk WC, McKay JK, Hohenlohe PA, Allendorf FW (2012) Harnessing genomics for delineating conservation units. Trends Ecol Evol 27:489–496. doi: 10.1016/j.tree.2012.05.012 PubMedPubMedCentralCrossRefGoogle Scholar
  62. Furst MA, McMahon DP, Osborne JL et al (2014) Disease associations between honeybees and bumblebees as a threat to wild pollinators. Nature 506:364–366PubMedPubMedCentralCrossRefGoogle Scholar
  63. Galbraith DA, Yang X, Niño EL et al (2015) Parallel epigenomic and transcriptomic responses to viral infection in honey bees (Apis mellifera). PLoS Pathog 11:1–24. doi: 10.1371/journal.ppat.1004713 CrossRefGoogle Scholar
  64. Garibaldi LA, Steffan-Dewenter I, Winfree R et al (2013) Wild pollinators enhance fruit set of crops regardless of honey bee abundance. Science 339:1608–1611. doi: 10.1126/science.1230200 PubMedCrossRefGoogle Scholar
  65. Garner BA, Hand BK, Amish SJ et al (2016) Genomics in conservation: case studies and bridging the gap between data and application. Trends Ecol Evol 31:81–83. doi: 10.1016/j.tree.2015.10.009 PubMedCrossRefGoogle Scholar
  66. Gayral P, Weinert L, Chiari Y et al (2011) Next-generation sequencing of transcriptomes: a guide to RNA isolation in nonmodel animals. Mol Ecol Resour 11:650–661. doi: 10.1111/j.1755-0998.2011.03010.x PubMedCrossRefGoogle Scholar
  67. Gezon ZJ, Wyman ES, Ascher JS et al (2015) The effect of repeated, lethal sampling on wild bee abundance and diversity. Methods Ecol Evol 6:1044–1054. doi: 10.1111/2041-210X.12375 CrossRefGoogle Scholar
  68. Goulson D, Hughes WOH (2015) Mitigating the anthropogenic spread of bee parasites to protect wild pollinators. Biol Conserv 191:10–19. doi: 10.1016/j.biocon.2015.06.023 CrossRefGoogle Scholar
  69. Goulson D, Lye GC, Darvill B (2008) Decline and conservation of bumble bees. Annu Rev Entomol 53:191–208. doi: 10.1146/annurev.ento.53.103106.093454 PubMedCrossRefGoogle Scholar
  70. Goulson D, Kaden JC, Lepais O et al (2011) Population structure, dispersal and colonization history of the garden bumblebee Bombus hortorum in the Western Isles of Scotland. Conserv Genet 12:867–879. doi: 10.1007/s10592-011-0190-4 CrossRefGoogle Scholar
  71. Graham CF, Glenn TC, McArthur AG et al (2015) Impacts of degraded DNA on restriction enzyme associated DNA sequencing (RADSeq). Mol Ecol Resour 15:1304–1315. doi: 10.1111/1755-0998.12404 PubMedCrossRefGoogle Scholar
  72. Graystock P, Yates K, Evison SEF et al (2013) The Trojan hives: pollinator pathogens, imported and distributed in bumblebee colonies. J Appl Ecol 50:1207–1215. doi: 10.1111/1365-2664.12134 Google Scholar
  73. Grozinger CM, Robinson GE (2015) The power and promise of applying genomics to honey bee health. Curr Opin Insect Sci 10:124–132. doi: 10.1016/j.cois.2015.03.007 PubMedPubMedCentralCrossRefGoogle Scholar
  74. Gutenkunst RN, Hernandez RD, Williamson SH, Bustamante CD (2009) Inferring the joint demographic history of multiple populations from multidimensional SNP frequency data. PLoS Genet 5:e1000695. doi: 10.1371/journal.pgen.1000695 PubMedPubMedCentralCrossRefGoogle Scholar
  75. Hancock AM, Witonsky DB, Alkorta-Aranburu G et al (2011) Adaptations to climate-mediated selective pressures in humans. PLoS Genet 7:e1001375. doi: 10.1371/journal.pgen.1001375 PubMedPubMedCentralCrossRefGoogle Scholar
  76. Harpur BA, Zayed A (2013) Accelerated evolution of innate immunity proteins in social insects: adaptive evolution or relaxed constraint? Mol Biol Evol 30:1665–1674. doi: 10.1093/molbev/mst061 PubMedCrossRefGoogle Scholar
  77. Harpur BA, Minaei S, Kent CF, Zayed A (2012) Management increases genetic diversity of honey bees via admixture. Mol Ecol 21:4414–4421. doi: 10.1111/j.1365-294X.2012.05614.x PubMedCrossRefGoogle Scholar
  78. Harpur BA, Minaei S, Kent CF, Zayed A (2013a) Admixture increases diversity in managed honey bees: reply to de la Rúa et al. (2013). Mol Ecol 22:3211–3215. doi: 10.1111/mec.12332 PubMedCrossRefGoogle Scholar
  79. Harpur BA, Sobhani M, Zayed A (2013b) A review of the consequences of complementary sex determination and diploid male production on mating failures in the Hymenoptera. Entomol Exp Appl 146:156–164. doi: 10.1111/j.1570-7458.2012.01306.x CrossRefGoogle Scholar
  80. Harpur BA, Kent CF, Molodtsova D et al (2014) Population genomics of the honey bee reveals strong signatures of positive selection on worker traits. Proc Natl Acad Sci USA 111:2614–2619. doi: 10.1073/pnas.1315506111 PubMedPubMedCentralCrossRefGoogle Scholar
  81. Harpur BA, Chapman NC, Krimus L et al (2015) Assessing patterns of admixture and ancestry in Canadian honey bees. Insectes Soc 62:479–489. doi: 10.1007/s00040-015-0427-1 CrossRefGoogle Scholar
  82. Hasselmann M, Ferretti L, Zayed A (2015) Beyond fruit-flies: population genomic advances in non-Drosophila arthropods. Brief Funct Genom 14:424–431. doi: 10.1093/bfgp/elv010 CrossRefGoogle Scholar
  83. Hey J, Machado CA (2003) The study of structured populations—new hope for a difficult and divided science. Nat Rev Genet 4:535–543PubMedCrossRefGoogle Scholar
  84. Hohenlohe PA, Bassham S, Etter PD et al (2010) Population genomics of parallel adaptation in threespine stickleback using sequenced RAD tags. PLoS Genet 6:e1000862. doi: 10.1371/journal.pgen.1000862 PubMedPubMedCentralCrossRefGoogle Scholar
  85. Hohenlohe PA, Amish SJ, Catchen JM et al (2011) Next-generation RAD sequencing identifies thousands of SNPs for assessing hybridization between rainbow and westslope cutthroat trout. Mol Ecol Resour 11(Suppl 1):117–122. doi: 10.1111/j.1755-0998.2010.02967.x PubMedCrossRefGoogle Scholar
  86. Holehouse KA, Hammond RL, Bourke AFG (2003) Non-lethal sampling of DNA from bumble bees for conservation genetics. Insectes Soc 50:277–285. doi: 10.1007/s00040-003-0672-6 CrossRefGoogle Scholar
  87. Hunt GJ, Guzmán-Novoa E, Fondrk MK, Page RE (1998) Quantitative trait loci for honey bee stinging behavior and body size. Genetics 148:1203–1213PubMedPubMedCentralGoogle Scholar
  88. Hurtado-Burillo M, Ruiz C, De Jesús May-Itzá W et al (2013) Barcoding stingless bees: genetic diversity of the economically important genus Scaptotrigona in Mesoamerica. Apidologie 44:1–10. doi: 10.1007/s13592-012-0146-9 CrossRefGoogle Scholar
  89. Jaffé R, Castilla A, Pope N et al (2016) Landscape genetics of a tropical rescue pollinator. Conserv Genet 17:267–278. doi: 10.1007/s10592-015-0779-0 CrossRefGoogle Scholar
  90. Jeffries DL, Copp GH, Lawson Handley L-J et al (2016) Comparing RADseq and microsatellites to infer complex phylogeographic patterns, an empirical perspective in the Crucian carp, Carassius carassius, L. Mol Ecol 25:2997–3018. doi: 10.1111/mec.13613 PubMedCrossRefGoogle Scholar
  91. Jha S (2015) Contemporary human-altered landscapes and oceanic barriers reduce bumble bee gene flow. Mol Ecol 24:993–1006. doi: 10.1111/mec.13090 PubMedCrossRefGoogle Scholar
  92. Jha S, Kremen C (2013) Urban land use limits regional bumble bee gene flow. Mol Ecol 22:2483–2495. doi: 10.1111/mec.12275 PubMedCrossRefGoogle Scholar
  93. Johnson RM, Dahlgren L, Siegfried BD, Ellis MD (2013) Acaricide, fungicide and drug interactions in honey bees (Apis mellifera). PLoS One 8:e54092. doi: 10.1371/journal.pone.0054092 PubMedPubMedCentralCrossRefGoogle Scholar
  94. Jones OR, Wang J (2009) Colony: a program for parentage and sibship inference from multilocus genotype data. Mol Ecol Resour 10:551–555PubMedCrossRefGoogle Scholar
  95. Jones BM, Wcislo WT, Robinson GE (2015) Developmental transcriptome for a facultatively eusocial bee, Megalopta genalis. G3: genes. Genomes Genet 5:2127–2135. doi: 10.1534/g3.115.021261 Google Scholar
  96. Kanbe Y, Okada I, Yoneda M et al (2008) Interspecific mating of the introduced bumblebee Bombus terrestris and the native Japanese bumblebee Bombus hypocrita sapporoensis results in inviable hybrids. Die Naturwissenschaften 95:1003–1008. doi: 10.1007/s00114-008-0415-7 PubMedCrossRefGoogle Scholar
  97. Kapheim KM, Pan H, Li C et al (2015) Genomic signatures of evolutionary transitions from solitary to group living. Science 348:1139–1143PubMedCrossRefGoogle Scholar
  98. Keller A, Danner N, Grimmer G, Ankenbrand M, von der Ohe K, von der Ohe W, Rost S, Härtel S, Steffan-Dewenter I (2015) Evaluating multiplexed next-generation sequencing as a method in palynology for mixed pollen samples. Plant Biol 17:558–566. doi: 10.1111/plb.12251 PubMedCrossRefGoogle Scholar
  99. Koch H, Schmid-Hempel P (2011) Socially transmitted gut microbiota protect bumble bees against an intestinal parasite. Proc Natl Acad Sci USA 108:19288–19292. doi: 10.1073/pnas.1110474108 PubMedPubMedCentralCrossRefGoogle Scholar
  100. Kocher SD, Li C, Yang W et al (2013) The draft genome of a socially polymorphic halictid bee, Lasioglossum albipes. Genome Biol 14:R142. doi: 10.1186/gb-2013-14-12-r142 PubMedPubMedCentralCrossRefGoogle Scholar
  101. Korneliussen TS, Moltke I, Albrechtsen A, Nielsen R (2013) Calculation of Tajima’s D and other neutrality test statistics from low depth next-generation sequencing data. BMC Bioinform 14:289. doi: 10.1186/1471-2105-14-289 CrossRefGoogle Scholar
  102. Kremen C, Williams NM, Thorp RW (2002) Crop pollination from native bees at risk from agricultural intensification. Proc Natl Acad Sci USA 99:16812–16816. doi: 10.1073/pnas.262413599 PubMedPubMedCentralCrossRefGoogle Scholar
  103. Laikre L, Allendorf FW, Aroner LC et al (2010) Neglect of genetic diversity in implementation of the convention on biological diversity. Conserv Biol 24:86–88. doi: 10.1111/j.1523-1739.2009.01425.x PubMedCrossRefGoogle Scholar
  104. Lim HC, Chu CC, Seufferheld MJ, Cameron SA (2015) Deep sequencing and ecological characterization of gut microbial communities of diverse bumble bee species. PLoS One 10:1–22. doi: 10.1371/journal.pone.0118566 Google Scholar
  105. López-Uribe MM, Morreale SJ, Santiago CK, Danforth BN (2015) Nest suitability, fine-scale population structure and male-mediated dispersal of a solitary ground nesting bee in an urban landscape. PLoS One 10:1–20. doi: 10.1371/journal.pone.0125719 CrossRefGoogle Scholar
  106. Lotterhos KE, Whitlock MC (2014) Evaluation of demographic history and neutral parameterization on the performance of F ST outlier tests. Mol Ecol 23:2178–2192. doi: 10.1111/mec.12725 PubMedPubMedCentralCrossRefGoogle Scholar
  107. Lozier JD (2014) Revisiting comparisons of genetic diversity in stable and declining species: assessing genome-wide polymorphism in North American bumble bees using RAD sequencing. Mol Ecol 23:788–801. doi: 10.1111/mec.12636 PubMedCrossRefGoogle Scholar
  108. Lozier JD, Strange JP, Steward IJ, Cameron SA (2011) Patterns of range-wide genetic variation in six North American bumble bee (Apidae: Bombus) species. Mol Ecol 20:4870–4888. doi: 10.1111/j.1365-294X.2011.05314.x PubMedCrossRefGoogle Scholar
  109. Lozier JD, Strange JP, Koch JB (2013) Landscape heterogeneity predicts gene flow in a widespread polymorphic bumble bee, Bombus bifarius (Hymenoptera: Apidae). Conserv Genet 14:1099–1110. doi: 10.1007/s10592-013-0498-3 CrossRefGoogle Scholar
  110. Lozier JD, Cameron SA, Duennes MA et al (2015) Relocation risky for bumblebee colonies. Science 350:286–287. doi: 10.1126/science.350.6258.286-b PubMedCrossRefGoogle Scholar
  111. Lozier JD, Jackson JM, Dillon ME, Strange JP (2016) Population genomics of divergence among extreme and intermediate color forms in a polymorphic insect. Ecol Evol 6:1075–1091. doi: 10.1002/ece3.1928 PubMedPubMedCentralCrossRefGoogle Scholar
  112. Maebe K, Meeus I, Ganne M et al (2015) Microsatellite analysis of museum specimens reveals historical differences in genetic diversity between declining and more stable Bombus species. PLoS One 10:e0127870. doi: 10.1371/journal.pone.0127870 PubMedPubMedCentralCrossRefGoogle Scholar
  113. Manel S, Schwartz MK, Luikart G, Taberlet P (2003) Landscape genetics: combining landscape ecology and population genetics. Trends Ecol Evol 18:189–197CrossRefGoogle Scholar
  114. Mao W, Schuler MA, Berenbaum MR (2013) Honey constituents up-regulate detoxification and immunity genes in the western honey bee Apis mellifera. Proc Natl Acad Sci USA 110:8842–8846. doi: 10.1073/pnas.1303884110 PubMedPubMedCentralCrossRefGoogle Scholar
  115. Marioni JC, Mason CE, Mane SM et al (2008) RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Res 18:1509–1517. doi: 10.1101/gr.079558.108 PubMedPubMedCentralCrossRefGoogle Scholar
  116. Martinson VG, Mago T, Koch H et al (2014) Genomic features of a bumble bee symbiont reflect its host environment. Appl Environ Microbiol 80:3793–3803. doi: 10.1128/AEM.00322-14 PubMedPubMedCentralCrossRefGoogle Scholar
  117. Maside X, Gómez-Moracho T, Jara L et al (2015) Population genetics of Nosema apis and Nosema ceranae: one host (Apis mellifera) and two different histories. PLoS One 10:e0145609. doi: 10.1371/journal.pone.0145609 PubMedPubMedCentralCrossRefGoogle Scholar
  118. Mattila HR, Seeley TD (2007) Genetic diversity in honey bee colonies enhances productivity and fitness. Science 317:362–364. doi: 10.1126/science.1143046 PubMedCrossRefGoogle Scholar
  119. McCarthy MI, Abecasis GR, Cardon LR et al (2008) Genome-wide association studies for complex traits: consensus, uncertainty and challenges. Nat Rev Genet 9:356–369. doi: 10.1038/nrg2344 PubMedCrossRefGoogle Scholar
  120. McCormack JE, Tsai WLE, Faircloth BC (2015) Sequence capture of ultraconserved elements from bird museum specimens. Mol Ecol Resour. doi: 10.1111/1755-0998.12466 PubMedGoogle Scholar
  121. McMahon DP, Natsopoulou ME, Doublet V et al (2016) Elevated virulence of an emerging viral genotype as a driver of honeybee loss. Proc R Soc B. doi: 10.1098/rspb.2016.0811 PubMedPubMedCentralGoogle Scholar
  122. Meeus I, Brown MJF, de Graaf DC, Smagghe G (2011) Effects of invasive parasites on bumble bee declines. Conserv Biol 25:662–671. doi: 10.1111/j.1523-1739.2011.01707.x PubMedCrossRefGoogle Scholar
  123. Michener CD (2000) The bees of the world. Johns Hopkins University Press, HopkinsGoogle Scholar
  124. Moore J, Jironkin A, Chandler D et al (2011) Recombinants between Deformed wing virus and Varroa destructor virus-1 may prevail in Varroa destructor-infested honeybee colonies. J Gen Virol 92:156–161. doi: 10.1099/vir.0.025965-0 PubMedCrossRefGoogle Scholar
  125. Moran NA (2015) Genomics of the honey bee microbiome. Curr Opin Insect Sci 10:22–28. doi: 10.1016/j.cois.2015.04.003 PubMedPubMedCentralCrossRefGoogle Scholar
  126. Morin PA, Martien KK, Taylor BL (2009) Assessing statistical power of SNPs for population structure and conservation studies. Mol Ecol Resour 9:66–73. doi: 10.1111/j.1755-0998.2008.02392.x PubMedCrossRefGoogle Scholar
  127. Mullin CA, Frazier M, Frazier JL et al (2010) High levels of miticides and agrochemicals in North American apiaries: implications for honey bee health. PLoS One 5:e9754. doi: 10.1371/journal.pone.0009754 PubMedPubMedCentralCrossRefGoogle Scholar
  128. Neumann P, Carreck NL (2010) Honey bee colony losses. J Apic Res 49:1–6. doi: 10.3896/IBRA.1.49.1.01 CrossRefGoogle Scholar
  129. Nielsen R, Korneliussen T, Albrechtsen A et al (2012) SNP calling, genotype calling, and sample allele frequency estimation from new-generation sequencing data. PLoS One 7:e37558. doi: 10.1371/journal.pone.0037558 PubMedPubMedCentralCrossRefGoogle Scholar
  130. Ouborg NJ, Pertoldi C, Loeschcke V et al (2010) Conservation genetics in transition to conservation genomics. Trends Genet 26:177–187. doi: 10.1016/j.tig.2010.01.001 PubMedCrossRefGoogle Scholar
  131. Packer L, Owen R (2001) Population genetic aspects of pollinator decline. Conserv Ecol 5:4CrossRefGoogle Scholar
  132. Packer L, Zayed A, Grixti JC et al (2005) Conservation genetics of potentially endangered mutualisms: reduced levels of genetic variation in specialist versus generalist bees. Conserv Biol 19:195–202. doi: 10.1111/j.1523-1739.2005.00601.x CrossRefGoogle Scholar
  133. Palsbøll PJ, Bérubé M, Allendorf FW (2007) Identification of management units using population genetic data. Trends Ecol Evol 22:11–16. doi: 10.1016/j.tree.2006.09.003 PubMedCrossRefGoogle Scholar
  134. Pamilo P, Gersch P, Thoren P, Seppa P (1997) Molecular population genetics of social insects. Annu Ecol Syst 28:1–25CrossRefGoogle Scholar
  135. Park D, Jung JW, Choi B-S et al (2015) Uncovering the novel characteristics of Asian honey bee, Apis cerana, by whole genome sequencing. BMC Genom 16:1–16CrossRefGoogle Scholar
  136. Paxton RJ (2005) Male mating behaviour and mating systems of bees: an overview. Apidologie 36:145–156. doi: 10.1051/apido:2005007 CrossRefGoogle Scholar
  137. Peterson BK, Weber JN, Kay EH et al (2012) Double digest RADseq: an inexpensive method for de novo SNP discovery and genotyping in model and non-model species. PLoS One 7:e37135. doi: 10.1371/journal.pone.0037135 PubMedPubMedCentralCrossRefGoogle Scholar
  138. Potts SG, Biesmeijer JC, Kremen C et al (2010) Global pollinator declines: trends, impacts and drivers. Trends Ecol Evol 25:345–353. doi: 10.1016/j.tree.2010.01.007 PubMedCrossRefGoogle Scholar
  139. Puritz JB, Matz MV, Toonen RJ et al (2014) Demystifying the RAD fad. Mol Ecol 23:5937–5942. doi: 10.1111/mec.12965 PubMedCrossRefGoogle Scholar
  140. Rasmussen C (2013) Stingless bees (Hymenoptera: Apidae: Meliponini) of the Indian subcontinent: diversity, taxonomy and current status of knowledge. Zootaxa 3647:401. doi: 10.11646/zootaxa.3647.3.1 PubMedCrossRefGoogle Scholar
  141. Reber Funk C, Schmid-Hempel R, Schmid-Hempel P (2006) Microsatellite loci for Bombus spp. Mol Ecol 6:83–86. doi: 10.1111/j.1471-8286.2005.01147.x CrossRefGoogle Scholar
  142. Rehan S, Berens AJ, Toth AL (2015) At the brink of eusociality: transcriptomic correlates of worker behaviour in a small carpenter bee. BMC Evol Biol 14:1–11. doi: 10.1186/s12862-014-0260-6 Google Scholar
  143. Renaut S, Nolte AW, Bernatchez L (2010) Mining transcriptome sequences towards identifying adaptive single nucleotide polymorphisms in lake whitefish species pairs (Coregonus spp. Salmonidae). Mol Ecol 19(Suppl 1):115–131. doi: 10.1111/j.1365-294X.2009.04477.x PubMedCrossRefGoogle Scholar
  144. Richardson RT, Lin C-H, Sponsler DB et al (2015) Application of ITS2 metabarcoding to determine the provenance of pollen collected by honey bees in an agroecosystem. Appl Plant Sci 3:1400066CrossRefGoogle Scholar
  145. Robinson JD, Bunnefeld L, Hearn J et al (2014a) ABC inference of multi-population divergence with admixture from unphased population genomic data. Mol Ecol 23:4458–4471PubMedPubMedCentralCrossRefGoogle Scholar
  146. Robinson JD, Coffman AJ, Hickerson MJ, Gutenkunst RN (2014b) Sampling strategies for frequency spectrum-based population genomic inference. BMC Evol Biol 14:254. doi: 10.1186/s12862-014-0254-4 PubMedPubMedCentralCrossRefGoogle Scholar
  147. Runckel C, Flenniken ML, Engel JC et al (2011) Temporal analysis of the honey bee microbiome reveals four novel viruses and seasonal prevalence of known viruses, Nosema, and Crithidia. PLoS One. doi: 10.1371/journal.pone.0020656 PubMedPubMedCentralGoogle Scholar
  148. Ryabov EV, Wood GR, Fannon JM et al (2014) A virulent strain of deformed wing virus (DWV) of honeybees (Apis mellifera) prevails after Varroa destructor-mediated, or in vitro, transmission. PLoS Pathog. doi: 10.1371/journal.ppat.1004230 PubMedPubMedCentralGoogle Scholar
  149. Sadd BM, Barribeau SM, Bloch G et al (2015) The genomes of two key bumblebee species with primitive eusocial organization. Genome Biol 16:76. doi: 10.1186/s13059-015-0623-3 PubMedPubMedCentralCrossRefGoogle Scholar
  150. Schlötterer C, Tobler R, Kofler R, Nolte V (2014) Sequencing pools of individuals—mining genome-wide polymorphism data without big funding. Nat Rev Genet 15:749–763. doi: 10.1038/nrg3803 PubMedCrossRefGoogle Scholar
  151. Shafer ABA, Wolf JBW, Alves PC et al (2015) Genomics and the challenging translation into conservation practice. Trends Ecol Evol 30:78–87. doi: 10.1016/j.tree.2014.11.009 PubMedCrossRefGoogle Scholar
  152. Sheffield CS, Richardson L, Cannings S et al (2016) Biogeography and designatable units of Bombus occidentalis Greene and B. terricola Kirby (Hymenoptera: Apidae) with implications for conservation status assessments. J Insect Conserv 20(2):189–199. doi: 10.1007/s10841-016-9853-2 CrossRefGoogle Scholar
  153. Smouse PE (2010) How many SNPs are enough? Mol Ecol 19:1265–1266. doi: 10.1111/j.1365-294X.2010.04555.x PubMedCrossRefGoogle Scholar
  154. Stolle E, Rohde M, Vautrin D et al (2009) Novel microsatellite DNA loci for Bombus terrestris (Linnaeus, 1758). Mol Ecol Resour 9:1345–1352. doi: 10.1111/j.1755-0998.2009.02610.x PubMedCrossRefGoogle Scholar
  155. Strange JP, Garnery L, Sheppard WS (2008) Morphological and molecular characterization of the Landes honey bee (Apis mellifera L.) ecotype for genetic conservation. J Insect Conserv 12:527–537. doi: 10.1007/s10841-007-9093-6 CrossRefGoogle Scholar
  156. Suchan T, Pitteloud C, Gerasimova NS et al (2016) Hybridization capture using RAD probes (hyRAD), a new tool for performing genomic analyses on collection specimens. PLoS One 11:e0151651. doi: 10.1371/journal.pone.0151651 PubMedPubMedCentralCrossRefGoogle Scholar
  157. Torson AS, Yocum GD, Rinehart JP et al (2015) Transcriptional responses to fluctuating thermal regimes underpinning differences in survival in the solitary bee Megachile rotundata. J Exp Biol 218:1060–1068. doi: 10.1242/jeb.113829 PubMedCrossRefGoogle Scholar
  158. Ulrich Y, Perrin N, Chapuisat M (2009) Flexible social organization and high incidence of drifting in the sweat bee, Halictus scabiosae. Mol Ecol 18:1791–1800. doi: 10.1111/j.1365-294X.2009.04154.x PubMedCrossRefGoogle Scholar
  159. Vijay N, Poelstra JW, Künstner A, Wolf JBW (2013) Challenges and strategies in transcriptome assembly and differential gene expression quantification. A comprehensive in silico assessment of RNA-seq experiments. Mol Ecol 22:620–634. doi: 10.1111/mec.12014 PubMedCrossRefGoogle Scholar
  160. Wallberg A, Han F, Wellhagen G et al (2014) A worldwide survey of genome sequence variation provides insight into the evolutionary history of the honeybee Apis mellifera. Nat Genet 46:1081–1088. doi: 10.1038/ng.3077 PubMedCrossRefGoogle Scholar
  161. Weber JN, Peterson BK, Hoekstra HE (2013) Discrete genetic modules are responsible for complex burrow evolution in Peromyscus mice. Nature 493:402–405. doi: 10.1038/nature11816 PubMedCrossRefGoogle Scholar
  162. Webster MT, Smith NGC, Ellegren H (2002) Microsatellite evolution inferred from human-chimpanzee genomic sequence alignments. Proc Natl Acad Sci USA 99:8748–8753. doi: 10.1073/pnas.122067599 PubMedPubMedCentralCrossRefGoogle Scholar
  163. Weinstock GM, Robinson GE, Gibbs RA et al (2006) Insights into social insects from the genome of the honeybee Apis mellifera. Nature 443:931–949. doi: 10.1038/nature05260 CrossRefGoogle Scholar
  164. Wheeler MM, Robinson GE (2014) Diet-dependent gene expression in honey bees: honey versus sucrose or high fructose corn syrup. Sci Rep 4:5726. doi: 10.1038/srep05726 PubMedPubMedCentralCrossRefGoogle Scholar
  165. Whitehorn PR, Tinsley MC, Brown MJF et al (2009) Impacts of inbreeding on bumblebee colony fitness under field conditions. BMC Evol Biol 9:152. doi: 10.1186/1471-2148-9-152 PubMedPubMedCentralCrossRefGoogle Scholar
  166. Whitehorn PR, Tinsley MC, Brown MJF et al (2011) Genetic diversity, parasite prevalence and immunity in wild bumblebees. Proc R Soc B 278:1195–1202. doi: 10.1098/rspb.2010.1550 PubMedCrossRefGoogle Scholar
  167. Whitfield CW, Cziko A-M, Robinson GE (2003) Gene expression profiles in the brain predict behavior in individual honey bees. Science 302:296–299. doi: 10.1126/science.1086807 PubMedCrossRefGoogle Scholar
  168. Whitfield CW, Behura SK, Berlocher SH et al (2006) Thrice out of Africa: Ancient and recent expansions of the honey bee, Apis mellifera. Science 314:642–645. doi: 10.1126/science.1132772 PubMedCrossRefGoogle Scholar
  169. Wilfert L, Gadau J, Schmid-Hempel P (2007) Variation in genomic recombination rates among animal taxa and the case of social insects. Heredity 98:189–197. doi: 10.1038/sj.hdy.6800950 PubMedCrossRefGoogle Scholar
  170. Williams PH, Osborne JL (2009) Bumblebee vulnerability and conservation world-wide. Apidologie 40:367–387. doi: 10.1051/apido/2009025 CrossRefGoogle Scholar
  171. Williams PH, An J, Brown MJF et al (2012a) Cryptic bumblebee species: consequences for conservation and the trade in greenhouse pollinators. PLoS One 7:e32992. doi: 10.1371/journal.pone.0032992 PubMedPubMedCentralCrossRefGoogle Scholar
  172. Williams PH, Brown MJF, Carolan JC et al (2012b) Unveiling cryptic species of the bumblebee subgenus Bombus s. str. worldwide with COI barcodes (Hymenoptera: Apidae). Syst Biodivers 10:21–56. doi: 10.1080/14772000.2012.664574 CrossRefGoogle Scholar
  173. Woodard SH, Fischman BJ, Venkat A et al (2011) Genes involved in convergent evolution of eusociality in bees. Proc Natl Acad Sci USA 108:7472–7477. doi: 10.1073/pnas.1103457108 PubMedPubMedCentralCrossRefGoogle Scholar
  174. Woodard SH, Lozier JD, Goulson D et al (2015) Molecular tools and bumble bees: revealing hidden details of ecology and evolution in a model system. Mol Ecol 24:2916–2936. doi: 10.1111/mec.13198 PubMedCrossRefGoogle Scholar
  175. Wragg D, Marti-Marimon M, Basso B et al (2016) Whole-genome resequencing of honeybee drones to detect genomic selection in a population managed for royal jelly. Sci Rep 6:27168. doi: 10.1038/srep27168 PubMedPubMedCentralCrossRefGoogle Scholar
  176. Yi X, Liang Y, Huerta-Sanchez E et al (2010) Sequencing of 50 human exomes reveals adaptation to high altitude. Science 329:75–78. doi: 10.1126/science.1190371 PubMedPubMedCentralCrossRefGoogle Scholar
  177. Zayed A (2006) Characterization of microsatellite loci from the solitary sweat bees Lasioglossum leucozonium and Lasioglossum oenotherae (Hymenoptera, Halictidae). Mol Ecol Notes 6:1154–1156. doi: 10.1111/j.1471-8286.2006.01469.x CrossRefGoogle Scholar
  178. Zayed A (2009) Bee genetics and conservation. Apidologie 40:237–262. doi: 10.1051/apido/2009026 CrossRefGoogle Scholar
  179. Zayed A, Packer L (2005) Complementary sex determination substantially increases extinction proneness of haplodiploid populations. Proc Natl Acad Sci USA 102:10742–10746. doi: 10.1073/pnas.0502271102 PubMedPubMedCentralCrossRefGoogle Scholar
  180. Zayed A, Packer L (2007) The population genetics of a solitary oligolectic sweat bee, Lasioglossum (Sphecodogastra) oenotherae (Hymenoptera: Halictidae). Heredity 99:397–405. doi: 10.1038/sj.hdy.6801013 PubMedCrossRefGoogle Scholar
  181. Zayed A, Robinson GE (2012) Understanding the relationship between brain gene expression and social behavior: lessons from the honey bee. Annu Rev Genet 46:591–615. doi: 10.1146/annurev-genet-110711-155517 PubMedCrossRefGoogle Scholar
  182. Zayed A, Whitfield CW (2008) A genome-wide signature of positive selection in ancient and recent invasive expansions of the honey bee Apis mellifera. Proc Natl Acad Sci USA 105:3421–3426. doi: 10.1073/pnas.0800107105 PubMedPubMedCentralCrossRefGoogle Scholar
  183. Zayed A, Packer L, Grixti JC et al (2006) Increased genetic differentiation in a specialist versus a generalist bee: implications for conservation. Conserv Genet 6:1017–1026. doi: 10.1007/s10592-005-9094-5 CrossRefGoogle Scholar
  184. Ziegler A, Koch A, Krockenberger K, Groβhennig A (2012) Personalized medicine using DNA biomarkers: a review. Hum Genet 131:1627–1638. doi: 10.1007/s00439-012-1188-9 PubMedPubMedCentralCrossRefGoogle Scholar
  185. Zimmermann Y, Schorkopf DLP, Moritz RFA et al (2011) Population genetic structure of orchid bees (Euglossini) in anthropogenically altered landscapes. Conserv Genet 12:1183–1194. doi: 10.1007/s10592-011-0221-1 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Department of Biological SciencesUniversity of AlabamaTuscaloosaUSA
  2. 2.Department of BiologyYork UniversityTorontoCanada

Personalised recommendations