Conservation Genetics

, Volume 18, Issue 1, pp 67–76 | Cite as

Isolation-by-time population structure in potamodromous Dourado Salminus brasiliensis in southern Brazil

  • Josiane Ribolli
  • David J. Hoeinghaus
  • Jeff A. Johnson
  • Evoy Zaniboni-Filho
  • Patricia D. de Freitas
  • Pedro M. GalettiJr.
Research Article

Abstract

Isolation-by-distance is recognized as a useful model for describing the spatial distribution of gene frequencies depending on dispersal characteristics of the species under study. However, some species may have populations that occupy the same geographic distribution during the breeding season yet reproduce at different time periods resulting in isolation-by-time (IBT). IBT may complicate investigations of spatial population structure if samples are obtained from multiple discrete time periods or may remain undiscovered if surveys are conducted with limited temporal scope. IBT has been observed in several studies of anadromous fishes (primarily salmon) as well as a few examples in taxa such as frogs, plants, birds and insects, but has not been rigorously tested in freshwater fishes. In this study, we assessed spatial and temporal genetic variation and tested for IBT in Dourado (Salminus brasiliensis), a large and commercially-important potamodromous fish species found in multiple river basins of South America. Using 11 polymorphic microsatellite loci, we estimated genetic differentiation of 317 adult Dourado collected monthly during the breeding season at three locations along the Uruguay River in southern Brazil. Analyses identified three populations that were clustered in time (i.e. early, middle and late), suggesting an IBT pattern of population structure with no significant spatial structure. Our results contribute to the mounting evidence across a wide range of taxa that suggests IBT may be more common that currently considered, even for species with very high dispersal capabilities such as potamodromous fishes.

Keywords

Conservation Microsatellites Population genetics Reproductive migration Temporal genetic differentiation 

Notes

Acknowledgments

JR acknowledges financial support provided by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and Programa de Doutorado Sanduíche no Exterior (PDSE) (process 1592/81-2). PMGJ thanks Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP, grant 2010/52315-7), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Sistema Nacional de Pesquisa em Biodiversidade (SISBIOTA-Brazil, MCTI/CNPq 563299/2010-0). EZF thanks Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, grant 302860/2014-2). We are grateful to Laboratório de Biologia e Cultivo de Peixes de Água Doce (LAPAD) of Universidade Federal de Santa Catarina (UFSC), and David A. Reynalte Tataje and Pedro Iaczinki for help with fish collections. Research was conducted under Animal Care Protocol PP00788.

Supplementary material

10592_2016_882_MOESM1_ESM.jpg (743 kb)
Supplementary material 1 (JPEG 743 kb)
10592_2016_882_MOESM2_ESM.jpg (98 kb)
Supplementary material 2 (JPEG 97 kb)
10592_2016_882_MOESM3_ESM.docx (13 kb)
Supplementary material 3 (DOCX 12 kb)

References

  1. Aguirre-Pabón J, Barandica NJ, García CL (2013) Mitochondrial DNA variation of the bocachico Prochilodus magdalenae (Characiformes, Prochilodontidae) in the Magdalena River Basin, Colombia. Aquat Conserv 23:594–605CrossRefGoogle Scholar
  2. Aljanabi SM, Martinez I (1997) Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques. Nucleic Acids Res 25:4692–4693CrossRefPubMedPubMedCentralGoogle Scholar
  3. Ashikaga FY, Orsi ML, Oliveira C, Senhorini JA (2015) The endangered species Brycon orbignyanus: genetic analysis and definition of priority areas for conservation. Environ Biol Fish 98:1845–1855CrossRefGoogle Scholar
  4. Barroca T, Arantes F, Magalhães B, Kalapothakis E (2012) Genetic diversity and population structure of P. costatus and P. argenteus preceding dam construction in the Paraopeba River, São Francisco River Basin, Minas Gerais, Brazil. Open J Genet 2:121–130CrossRefGoogle Scholar
  5. Barroso RM, Hilsdorf AWS, Moreira HLM, Traub-Cseko YM (2003) Identification and characterization of microsatellites loci in B. opalinus (Cuvier, 1819) (Characiforme, Characidae, Bryconiae). Mol Ecol Notes 3:297–298CrossRefGoogle Scholar
  6. Behrmann-Godel J, Gerlach G, Eckmann R (2006) Kin and population recognition in sympatric Lake Constance perch (Perca fluviatilis L.): can assortative shoaling drive population divergence? Behav Ecol Sociobiol 59:461–468CrossRefGoogle Scholar
  7. Berdugo GO, Barandica JCN (2014) Genetic diversity and population structure of bocachico P. magdalenae (Pisces, Prochilodontidae) in the Magdalena river basin and its tributaries, Colombia. Genet Mol Biol 37:37–45CrossRefPubMedGoogle Scholar
  8. Bessert ML, Ortí G (2008) Genetic effects of habitat fragmentation on blue sucker populations in the upper Missouri River (C. elongatus Lesueur, 1918). Conserv Genet 9:821–832CrossRefGoogle Scholar
  9. Braga-Silva A, Galetti PM Jr (2016) Evidence of isolation by time in freshwater migratory fish P. costatus (Characiformes, Prochilodontidae). Hydrobiologia 765:159–167CrossRefGoogle Scholar
  10. Brannon EL (1987) Mechanisms stabilizing salmonid fry emergence timing. In: Smith HD, Margolis L, Wood CC (eds) Sockeye salmon (Oncorhynchus nerka) population biology and future management. Canadian Special Publication of Fisheries and Aquatic Sciences, vol 96, pp 120–124Google Scholar
  11. Brodersen J, Nilsson PA, Hansson LA (2008) Condition-dependent individual decision-making determines cyprinid partial migration. Ecology 89:1195–1200CrossRefPubMedGoogle Scholar
  12. Carolsfield J, Harvey B, Ross C, Baer A (2003) Migratory fishes of South America: biology, fisheries and conservation status. International Development Research Centre and the World Bank, Victoria, CanadaGoogle Scholar
  13. Carvalho-Costa LF, Hatanaka T, Galetti PM Jr (2008) Evidence of lack of population substructuring in the Brazilian freshwater fish P. costatus. Genet Mol Ecol 31:377–380Google Scholar
  14. Coulson MW, Bradbury IR, Bentzen P (2006) Temporal genetic differentiation: continuous v. discontinuous spawning runs in anadromous rainbow smelt O. mordax (Mitchill). J Fish Biol 69:209–216CrossRefGoogle Scholar
  15. Daïnou K, Laurenty E, Mahy G, Doucet JL (2012) Phenological patterns in a natural population of a tropical timber tree species, Milicia excelsa (Moraceae): evidence of isolation by time and its interaction with feeding strategies of dispersers. Am J Bot 99:1453–1463CrossRefPubMedGoogle Scholar
  16. Delfino R, Baigun C (1985) Marcaciones de peces em el embalse de Salto Grande, rio Uruguay (Argentina–Uruguay). Rev Asoc Cienc Nat Litoral 16:85–93Google Scholar
  17. Do C, Waples RS, Peel D, Macbeth GM, Tillett BJ, Ovenden JR (2014) NeEstimator V2: re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Mol Ecol Res 14:209–214CrossRefGoogle Scholar
  18. Duponchelle F, Pouilly M, Pécheyran C, Hauser M, Renno JF, Panfili J, Darnaude AM, García-Vasquez A, Carvajal-Vallejos F, García-Dávila C, Doria C, Bérail S, Donard A, Sondag F, Santos RV, Nuñez J, Point D, Labonne M, Baras E (2016) Trans-Amazonian natal homing in giant catfish. J Appl Ecol (in press)Google Scholar
  19. Earl D, VonHoldt B (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361CrossRefGoogle Scholar
  20. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620CrossRefPubMedGoogle Scholar
  21. Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under linux and windows. Mol Ecol Res 10:564–567CrossRefGoogle Scholar
  22. Falush DD, Stephens MM, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587PubMedPubMedCentralGoogle Scholar
  23. Faria J, Campos FP, Branco JO, Bruford MW (2010) Population structure in the South American tern Sterna hirundinacea in the South Atlantic : two populations with distinct breeding phenologies. J Avian Biol 41:378–387CrossRefGoogle Scholar
  24. Fillatre EK, Etherton P, Heath DD (2003) Bimodal run distribution in a northern population of sockeye salmon (Oncorhynchus nerka): life history and genetic analysis on a temporal scale. Mol Ecol 12:1793–1805CrossRefPubMedGoogle Scholar
  25. Fishback AG, Danzmann RG, Ferguson MM (2000) Microsatellite allelic heterogeneity among hatchery rainbow trout maturing in different seasons. J Fish Biol 57:1367–1380CrossRefGoogle Scholar
  26. Garant D, Dodson JJ, Bernatchez L (2001) A genetic evaluation of mating system and determinants of individual reproductive success in Atlantic salmon (Salmo salar L.). J Hered 92:137–145CrossRefPubMedGoogle Scholar
  27. Garza JC, Gilbert-Horvath EA, Spence BC, Williams TH, Fish H, Gough SA, Anderson EC (2014) Population structure of steelhead in coastal california. Trans Am Fish Soc 143:134–152CrossRefGoogle Scholar
  28. Gerard PR, Fernandez-Manjarres JF, Frascaria-Lacoste N (2006) Temporal cline in a hybrid zone population between Fraxinus excelsior L. and Fraxinus angustifolia Vahl. Mol Ecol 15:3655–3667CrossRefPubMedGoogle Scholar
  29. Godoy MP (1975) Peixes do Brasil, subordem Characoidei: bacia do rio Mogí Guassú. vol 1. Editora Franciscana. Pirassununga, São Paulo Google Scholar
  30. Gomes PC, Lopera-Barrero NM, Vargas L, Junior DPS, Povh JA, Sirol RN, Ribeiro RP (2013) Genetic diversity of S. brasiliensis (Characiformes: Characidae) collected in the passage ladder of the Canoas I hydropower plant in the Paranapanema River, Brazil. Semin Cienc Agrar 34:1421–1432Google Scholar
  31. Goudet J (2001) FSTAT, a program to estimate and test gene diversities and fixation indices Version 2.9.3. http://www2.unil.ch/popgen/softwares/fstat.htm
  32. Grimm AM, Ferraz SET, Gomes J (1998) Precipitation anomalies in southern Brazil associated with El Niño and La Niña events. J Clim 11:2863–2880CrossRefGoogle Scholar
  33. Grimm AM, Barros VR, Doyle ME (2000) Climate variability in Southern America associated with El Niño and La Niña events. J Clim 13:35–58CrossRefGoogle Scholar
  34. Hahn L, Agostinho A, English K, Carsfeld J, Camara LF, Cooke SJ (2011) Use of radiotelemetry to track threatened dorados S. brasiliensis in the upper Uruguay River, Brazil. Endanger Species Res 15:103–114CrossRefGoogle Scholar
  35. Hardy OJ, Vekemans X (1999) Isolation by distance in a continuous population: reconciliation between spatial autocorrelation analysis and population genetics models. Heredity 83:145–154CrossRefPubMedGoogle Scholar
  36. Hatanaka T, Galetti PM Jr (2003) RAPD markers indicate the occurrence of structured populations in a migratory freshwater fish species. Gen Mol Biol 26:19–25CrossRefGoogle Scholar
  37. Heim KC, Wipfli MS, Whitman MS, Seitz AC (2016) Body size and condition influence migration timing of juvenile Arctic grayling. Ecol Freshw Fish 25:156–166CrossRefGoogle Scholar
  38. Helfman G, Collette BB, Facey DE, Bowen BW (2009) The diversity of fishes: biology, evolution, and ecology. Wiley Blackwell, ChichesterGoogle Scholar
  39. Hendry AP, Day T (2005) Population structure attributable to reproductive time: isolation by time and adaptation by time. Mol Ecol 14:901–916CrossRefPubMedGoogle Scholar
  40. Hendry A, Berg O, Quinn T (1999) Condition dependence and adaptation-by-time: breeding date, life history, and energy allocation within a population of salmon. Oikos 85:499–514CrossRefGoogle Scholar
  41. Hermann TW, Stewart DJ, Limburg KE, Castello L (2016) Unravelling the life history of Amazonian fishes through otolith microchemistry. Roy Soc Open Sci 3:160206CrossRefGoogle Scholar
  42. Hoeinghaus DJ, Agostinho AA, Gomes LC, Winemiller KO (2009) Effects of river impoundment on ecosystem services of large tropical rivers: embodied energy and market value of artisanal fisheries. Conserv Biol 23:1222–1231CrossRefPubMedGoogle Scholar
  43. Kovach RP, Gharrett AJ, Tallmon DA (2013) Temporal patterns of genetic variation in a salmon population undergoing rapid change in migration timing. Evolut Appl 6:795–807CrossRefGoogle Scholar
  44. Leberg PL (2002) Estimating allelic richness: effects of sample size and bottlenecks. Mol Ecol 11:2445–2449CrossRefPubMedGoogle Scholar
  45. Machado C (2003) Aspectos reprodutivos de dourado S. brasiliensis (Cuvier, 1816)(Teleostei, Characidae) na região do Alto Rio Uruguai, Brasil. Msc. Thesis, Universidade Federal de Santa Catarina, Florianópolis, BrazilGoogle Scholar
  46. Maes G, Pujolar JM, Hellemans B, Volckaert FAM (2006) Evidence for isolation by time in the European eel (Anguilla anguilla L.). Mol Ecol 15:2095–2107CrossRefPubMedGoogle Scholar
  47. Mechoso CR, Iribarren GP (1992) Streamflow in southeastern South America and the southern oscillation. J Clim 5:1535–1540CrossRefGoogle Scholar
  48. Organizacion de los Estados Americanos (1975) Cuenca del Rio de la Plata: Estudio Para su Planificacion y Desarrollo. Washington, DCGoogle Scholar
  49. Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295CrossRefGoogle Scholar
  50. Pereira LHG, Foresti F, Oliveira C (2009) Genetic structure of the migratory catfish P. corruscans (Siluriformes: Pimelodidae) suggests homing behaviour. Ecol Freshw Fish 18:215–225CrossRefGoogle Scholar
  51. Primmer CR, Veselov AJ, Zubchenko A, Poututin A, Bakhmet I, Koskinen MT (2006) Isolation by distance within a river system: genetic population structuring of Atlantic salmon, Salmo salar, in tributaries of the Varzuga River in northwest Russia. Mol Ecol 15:653–666CrossRefPubMedGoogle Scholar
  52. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedPubMedCentralGoogle Scholar
  53. Quinn TP, Busack CA (1985) Chemosensory recognition of siblings in juvenile Coho salmon (Oncorhynchus kisutch). Anim Behav 33:51–56CrossRefGoogle Scholar
  54. Quinn TP, Unwin MJ, Kinnison MT (2000) Evolution of temporal isolation in the wild: genetic divergence in timing of migration and breeding by introduced Chinook salmon populations. Evolution 54:1372–1385CrossRefPubMedGoogle Scholar
  55. Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249Google Scholar
  56. Ribolli J, Miño CI, Zaniboni-Filho E, Souza Guerreiro TC, Reynalte-Tataje DA, Freitas PD, Jr Galetti PM (2016) Preliminary insights into the genetic mating system of Neotropical S. brasiliensis: kinship assignment and parental reconstruction reveal polygynandry. Ichthyol Res 63:87–191CrossRefGoogle Scholar
  57. Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223–225CrossRefGoogle Scholar
  58. Richter-Boix A, Quintela M, Kierczak M, Franch M, Laurila A (2013) Fine-grained adaptive divergence in an amphibian: genetic basis of phenotypic divergence and the role of nonrandom gene flow in restricting effective migration among wetlands. Mol Ecol 22:1322–1340CrossRefPubMedGoogle Scholar
  59. Roberts JH, Angermeier PL, Hallerman EM (2013) Distance, dams and drift: what structures populations of an endangered, benthic stream fish? Freshw Biol 58:2050–2064CrossRefGoogle Scholar
  60. Rolshausen G, Hobson KA, Schaefer HM (2010) Spring arrival along a migratory divide of sympatric blackcaps (Sylvia atricapilla). Oecologia 162:175–183CrossRefPubMedGoogle Scholar
  61. Rossini BC, Nunes AG, Freitas PD, Jr Galetti PM (2011) Permanent genetic resources added to molecular ecology resources database 1 December 2010–31 January 2011. Mol Ecol Res 11:586–589CrossRefGoogle Scholar
  62. Roumet M, Noilhan C, Latreille M, David J, Muller MH (2013) How to escape from crop-to-weed gene flow: phenological variation and isolation-by-time within weedy sunflower populations. New Phytol 197:642–654CrossRefPubMedGoogle Scholar
  63. Rousset F (1997) Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145:1219–1228PubMedPubMedCentralGoogle Scholar
  64. Rueda EC, Carriquiriborde P, Monzón AM, Somoza GM, Ortí G (2013) Seasonal variation in genetic population structure of sábalo (P. lineatus) in the Lower Uruguay River. Genetica 141:401–407CrossRefPubMedGoogle Scholar
  65. Sanches A, Galetti PM Jr (2007) Genetic evidence of population structuring in the neotropical freshwater fish Brycon hilarii (Valenciennes, 1850). Braz J Biol Rev Bras Biol 67:889–895CrossRefGoogle Scholar
  66. Schuelke M (2000) An economic method for the fluorescent labeling of PCR fragments. Nat Biotechnol 18:233–234CrossRefPubMedGoogle Scholar
  67. Silva JV, Hilsdorf AWS (2011) Isolation and characterization of polymorphic microsatellite loci from Salminus hilarii (Characiformes: Characidae). Conserv Genet Res 3:437–439CrossRefGoogle Scholar
  68. Silva JV, Hallerman EM, Orfão LH, Hilsdorf AWS (2015) Genetic structuring of Salminus hilarii Valenciennes, 1850 (Teleostei: Characiformes) in the rio Paraná basin as revealed by microsatellite and mitochondrial DNA markers. Neot Ichthyol 13:547–556CrossRefGoogle Scholar
  69. So N, Maes GE, Volckaert FAM (2006) High genetic diversity in cryptic populations of the migratory sutchi catfish Pangasianodon hypophthalmus in the Mekong River. Heredity 96:166–174CrossRefPubMedGoogle Scholar
  70. Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538CrossRefGoogle Scholar
  71. Vazzoler AEAM (1996) Biologia da reprodução de peixes teleósteos: teoria e práctica. Universidade Estadual de Maringa, MaringáGoogle Scholar
  72. Waples RS (2006) A bias correction for estimates of effective population size based on linkage disequilibrium at unlinked gene loci. Conserv Genet 7:167–184CrossRefGoogle Scholar
  73. Waples RS, Do C (2008) LDNE: a program for estimating effective population size from data on linkage disequilibrium. Mol Ecol Res 8:753–756CrossRefGoogle Scholar
  74. Wasko AP, Galetti PM Jr (2002) RAPD analysis in the Neotropical fish Brycon lundii: genetic diversity and its implications for the conservation of the species. Hydrobiol 474:131–137CrossRefGoogle Scholar
  75. Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370CrossRefGoogle Scholar
  76. Winemiller KO, McIntyre PB, Castello L, Fluet-Chouinard E, Giarrizzo T, Nam S, Baird IG, Darwall W, Lujan NK, Harrison I, Stiassny ML, Silvano RA, Fitzgerald DB, Pelicice FM, Agostinho AA, Gomes LC, Albert JS, Baran E, Petrere M Jr, Zarfl C, Mulligan M, Sullivan JP, Arantes CC, Sousa LM, Koning AA, Hoeinghaus DJ, Sabaj M, Lundberg JG, Armbruster J, Thieme ML, Petry P, Zuanon J, Torrente Vilara G, Snoeks J, Ou C, Rainboth W, Pavanelli CS, van Soesbergen A, Akama A, Sáenz L (2016) Balancing hydropower and biodiversity in the Amazon, Congo, and Mekong. Science 351:128–129CrossRefPubMedGoogle Scholar
  77. Yamamoto S, Sota T (2009) Incipient allochronic speciation by climatic disruption of the reproductive period. Proc R Soc 276:2711–2719CrossRefGoogle Scholar
  78. Yamamoto S, Morita K, Koizumi I, Maekawa K (2004) Genetic differentiation of white-spotted charr (Salvelinus leucomaenis) populations after habitat fragmentation: spatial–temporal changes in gene frequencies. Conserv Genet 5:529–538CrossRefGoogle Scholar
  79. Zaniboni-Filho E, Schulz UH (2003) Migratory fishes of the Uruguay River. In: Carolsfeld J, Harvey B, Baer A, Ross C (eds) Migratory fishes of South America: biology, fisheries and conservation status. International Development Research Centre and the World Bank. Victoria, Canada, pp 157–194Google Scholar
  80. Zayas MA, Cordiviola E (2007) The conservation state of Characidae fish (Pisces: Characiformes) in an area of the Plata basin, Argentina estado de conservación de peces Characidae (Pisces: Characiformes) en un área de la cuenca del plata, argentina. Gayana 71:178–186Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Josiane Ribolli
    • 1
    • 2
    • 3
  • David J. Hoeinghaus
    • 4
  • Jeff A. Johnson
    • 4
  • Evoy Zaniboni-Filho
    • 2
  • Patricia D. de Freitas
    • 3
  • Pedro M. GalettiJr.
    • 3
  1. 1.Programa de Pós-Graduação em Ecologia e Recursos NaturaisUniversidade Federal de São CarlosSão CarlosBrazil
  2. 2.Laboratório de Biologia e Cultivo de Peixes de Água Doce, Departamento de AquiculturaUniversidade Federal de Santa CatarinaFlorianópolisBrazil
  3. 3.Laboratório de Biodiversidade Molecular e Conservação, Departamento de Genética e EvoluçãoUniversidade Federal de São CarlosSão CarlosBrazil
  4. 4.Department of Biological Sciences, Advanced Environmental Research InstituteUniversity of North TexasDentonUSA

Personalised recommendations