Advertisement

Conservation Genetics

, Volume 17, Issue 5, pp 1093–1108 | Cite as

Genetic differences in the response to landscape fragmentation by a habitat generalist, the bobcat, and a habitat specialist, the ocelot

  • Jan E. Janecka
  • Michael E. Tewes
  • Imogene A. Davis
  • Aaron M. Haines
  • Arturo Caso
  • Terry L. Blankenship
  • Rodney L. Honeycutt
Research Article

Abstract

The ecology of a species strongly influences genetic variation and population structure. This interaction has important conservation implications because taxa with low dispersal capability and inability to use different habitats are more susceptible to anthropogenic stressors. Ocelots (Leopardus pardalis albescens) and bobcats (Lynx rufus texensis) are sympatric in Texas and northeastern Mexico; however, their ecology and conservation status are markedly different. We used 10 microsatellite loci and a 397-bp segment of the mitochondrial control region to examine how historical and ecological differences in these two species have influenced current patterns of genetic diversity in a landscape heavily altered by anthropogenic activities. Substantially higher genetic diversity (heterozygosity and haplotype diversity) and population connectivity was observed for bobcats in comparison to ocelots. The level of divergence among proximate ocelot populations (<30 km) was greater than between bobcat populations separated by >100 km. Ocelot populations in the US have never recovered from reductions experienced during the twentieth century, and their low genetic variation and substantial isolation are exacerbated by strong preference for dense native thornshrub and avoidance of open habitat. In contrast, despite continued legal harvesting and frequent road-related mortality, bobcats have maintained wide distribution, high abundance, and population connectivity. Our study illustrates that sympatric species with a similar niche can still have sufficient ecological differences to alter their response to anthropogenic change. Sensitive species, such as the ocelot, require additional conservation actions to sustain populations. Ecological differences among species occupying a similar guild are important to consider when developing conservation plans.

Keywords

Felidae Microsatellites Population structure Dispersal Ecology 

Notes

Acknowledgments

We thank the Rob and Bessie Welder Wildlife Foundation (to TLB and JEJ), Tim and Karen Hixon Foundation (to MET), Rachel and Ben Vaughan Foundation (to MET), James R. Dougherty Foundation (to MET), Karen and Phil Hunke (to MET), and Texas Parks and Wildlife Department Grant E-77-R (to JEJ & RLH) for funding this project. This article represents publication number 15-114 of the Caesar Kleberg Wildlife Research Institute, 001 of the East Wildlife Foundation, and 714 of the Rob and Bessie Welder Foundation. We thank Randy DeYoung, Alan Fedynich, and Mary Janecka for thorough editing of the manuscript and valuable comments, and Matt Jevit for creating species distribution map.

Supplementary material

10592_2016_846_MOESM1_ESM.docx (52 kb)
Supplementary material 1 (DOCX 52 kb)

References

  1. Avise JC (1994) Molecular markers, natural history, and evolution. Chapman & Hall, New YorkCrossRefGoogle Scholar
  2. Avise JC (2000) Phylogeography: the history and formation of species. Harvard University Press, CambridgeGoogle Scholar
  3. Blankenship TL (2000) Ecological response of bobcats to fluctuating prey populations on the Welder Wildlife Foundation Refuge. Dissertation, Texas A&M University–Texas A&M University–Kingsville, College Station and Kingsville, Texas, USAGoogle Scholar
  4. Blankenship TL, Haines AM, Tewes ME, Silvy NJ (2006) Comparing survival and cause-specific mortality between resident and transient bobcats Lynx rufus. Wildl Biol 12:297–304CrossRefGoogle Scholar
  5. Branch LC, Clark AM, Molar PE, Bowen BW (2003) Fragmented landscapes, habitat specificity, and conservation genetics of three lizards in Florida scrub. Conserv Genet 2:199–212CrossRefGoogle Scholar
  6. Büchi L, Vuilleumier S (2014) Coexistence of specialist and generalist species is shaped by dispersal and environmental factors. Am Nat 183:612–624CrossRefPubMedGoogle Scholar
  7. Casas-Marce M, Soriano L, Lopez-Bao JV, Godoy JA (2013) Genetics at the verge of extinction: insights from the Iberian lynx. Mol Ecol 22:5503–5515CrossRefPubMedGoogle Scholar
  8. Caso A (1994) Home range and habitat use of three neotropical carnivores in northeast Mexico. Thesis, Texas A&M University–Kingsville, Kingsville, USAGoogle Scholar
  9. Clement M, Posada D, Crandall K (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9:1657–1660CrossRefPubMedGoogle Scholar
  10. Crooks KR (2002) Relative sensitivities of mammalian carnivores to habitat fragmentation. Conserv Biol 16:488–502CrossRefGoogle Scholar
  11. Croteau EK, Heist EJ, Nielsen CK, Hutchinson JR, Hellgren EC (2012) Microsatellites and mitochondrial DNA reveal regional population structure in bobcats (Lynx rufus) of North America. Conserv Genet 13:1637–1651CrossRefGoogle Scholar
  12. Delaney KS, Riley SPD, Fisher N (2010) A rapid, strong, and convergent genetic response to urban habitat fragmentation in four divergent and widespread vertebrates. PLoS ONE 5(9):e12767. doi: 10.1371/journal.pone.0012767 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Didham RK (2010) Ecological consequences of habitat fragmentation. In: Janson R (ed) Encyclopedia of life sciences. Wiley, Chichester. doi: 10.1002/9780470015902.a0021904 Google Scholar
  14. Earl DA, vonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361CrossRefGoogle Scholar
  15. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620CrossRefPubMedGoogle Scholar
  16. Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491PubMedPubMedCentralGoogle Scholar
  17. Excoffier L, Laval G, Schneider S (2005) Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinform 1:47–50Google Scholar
  18. Fisher CV (1998) Habitat use by free-ranging felids in an agroecosystem. Masters Thesis, Texas A&M University–Kingsville, Kingsville, USAGoogle Scholar
  19. Frankham R (2005) Genetics and extinction. Biol Conserv 126:131–140CrossRefGoogle Scholar
  20. Frankham R, Ralls K (1998) Conservation biology: inbreeding leads to extinction. Nature 392:441–442CrossRefGoogle Scholar
  21. Freeman AR, MacHugh DE, McKeown S, Walzer C, McConnell DJ, Bradley DG (2001) Sequence variation in mitochondrial DNA control region of wild African cheetah (Acinonyx jubatus). Heredity 86:355–362CrossRefPubMedGoogle Scholar
  22. Fu XH, Li WH (1993) Statistical tests of neutrality of mutations. Genetics 133:693–709PubMedPubMedCentralGoogle Scholar
  23. Gårdmark A, Enberg K, Ripa J, Laasko J, Kaitala V (2003) The ecology of recovery. Ann Zool Fenn 40:131–144Google Scholar
  24. Goudet J (1995) FSTAT (version 1.2): a computer program to calculate F-statistics. J Hered 86:485–486Google Scholar
  25. Gubbi S, Poornesha HC, Madhusudan MD (2012) Impact of vehicular traffic on the use of highway edges by large mammals in a South Indian wildlife reserve. Curr Sci 102:1047–1051Google Scholar
  26. Guo SW, Thompson EA (1992) Performing the exact test of Hardy-Weinberg proportions for multiple alleles. Biometrics 48:361–372CrossRefPubMedGoogle Scholar
  27. Haines AM, Tewes ME, Laack LL (2005a) Survival and sources of mortality in ocelots. J Wildl Manag 69:255–263CrossRefGoogle Scholar
  28. Haines AM, Tewes ME, Laack LL, Grant WE, Young JH (2005b) Evaluating recovery strategies for an ocelot population in southern Texas. Biol Conserv 126:512–522CrossRefGoogle Scholar
  29. Haines AM, Grassman LI Jr, Tewes ME, Janecka JE (2006a) The first ocelot (Leopardus pardalis) monitored via GPS telemetry. Eur J Wildl Res 52:216–218CrossRefGoogle Scholar
  30. Haines AM, Janecka JE, Tewes ME, Grassman LI Jr (2006b) The importance of private lands for the endangered ocelot Leopardus pardalis in the United States using camera traps. Oryx 40:1–5CrossRefGoogle Scholar
  31. Haines AM, Tewes ME, Laack LL, Horne JS, Young JH (2006c) A habitat-based population viability analysis for ocelots (Leopardus pardalis) in the United States. Biol Conser 132:424–436CrossRefGoogle Scholar
  32. Haines AM, Leu M, Svancara L, Wilson G, Scott JM, Reese KP (2008) A theoretical approach to using human footprint models to measure landscape level conservation success. Conserv Lett 1:165–172CrossRefGoogle Scholar
  33. Harveson PM, Tewes ME, Anderson GL, Laack LL (2004) Habitat use by ocelots in south Texas: implications for restoration. Wildl Soc Bull 32:948–954CrossRefGoogle Scholar
  34. Hedrick P (2011) Genetics of populations, 4th edn. Jones and Barlett Publishers, SudburyGoogle Scholar
  35. Heilbrun RD, Silvy NJ, Peterson MJ, Tewes ME (2006) Estimating bobcat abundance using automatically triggered cameras. Wildl Soc Bull 34:69–73CrossRefGoogle Scholar
  36. Henle K, Davies KF, Kleyer M, Margules C, Settele J (2004) Predictors of species sensitivity to fragmentation. Biodivers Conserv 13:207–251CrossRefGoogle Scholar
  37. Homer C, Dewitz J, Fry J, Coan M, Hossain N, Larson C, Herold N, McKerrow A, VanDriel JN, Wickham J (2007) Completion of the 2001 National Land Cover Database for the Conterminous United States. Photogramm Eng Remote Sens 73(4):337–341Google Scholar
  38. Horne JS, Haines AM, Tewes ME, Laack LL (2009) Habitat partitioning by sympatric ocelots and bobcats: implications for recovery of ocelots in southern Texas. Southwest Nat 54:119–126CrossRefGoogle Scholar
  39. Jackson VL, Zimmerman EG (2005) Landscape metrics associated with habitat use by ocelots in south Texas. J Wildl Manag 69:733–738CrossRefGoogle Scholar
  40. Jae-Heup K, Eizirik E, O’Brien SJ, Johnson WE (2001) Structure and patterns of sequence variation in the mitochondrial DNA control region of the great cats. Mitochondrion 14:279–292CrossRefGoogle Scholar
  41. Jahrsdoerfer SE, Leslie DM Jr (1988) Tamaulipan brushland of the Lower Rio Grande Valley of South Texas: description, human impacts, and management options. United States fish and wildlife service. Biol Rep 88(36):66Google Scholar
  42. Janecka JE, Blankenship TL, Hirth DH, Tewes ME, Kilpatrick CW, Grassman LI Jr (2006a) Kinship and social structure of bobcats (Lynx rufus) inferred from microsatellite and radio-telemetry data. J Zool (London) 269:494–501CrossRefGoogle Scholar
  43. Janecka JE, Grassman LI Jr, Derr JN, Honeycutt RL, Eiadthong W, Tewes ME (2006b) Rapid whole genome amplification of DNA from felids: applications for conservation genetics. Wildl Soc Bull 34:1134–1141CrossRefGoogle Scholar
  44. Janecka JE, Blankenship TL, Hirth DH, Kilpatrick CW, Grassman LI Jr, Tewes ME (2007a) Evidence for male-biased dispersal in bobcats using relatedness and kinship analysis. J Wildl Biol 13:38–47CrossRefGoogle Scholar
  45. Janecka JE, Grassman LI Jr, Honeycutt RL, Tewes ME (2007b) Whole genome amplification for sequencing and applications in conservation genetics. J Wildl Manag 71:1357–1360CrossRefGoogle Scholar
  46. Janecka JE, Walker CW, Tewes ME, Caso A, Laack LL, Honeycutt RL (2007c) Phylogenetic relationships of ocelot (Leopardus pardalis albescens) populations from the Tamaulipan Biotic Province and implications for recovery. Southwest Nat 52:89–96CrossRefGoogle Scholar
  47. Janecka JE, Tewes ME, Grassman LI Jr, Haines AM, Honeycutt RL (2008) Small effective population sizes of two remnant ocelot populations (Leopardus pardalis albescens) in the United States. Conserv Genet 9:869–878CrossRefGoogle Scholar
  48. Janecka JE, Tewes ME, Laack LL, Caso A, Grassman LI Jr, Haines AM, Shindle DB, Davis B, Murphy WJ, Honeycutt RL (2011) Reduced genetic diversity and isolation of remnant ocelot populations occupying a severely fragmented landscape in southern Texas. Anim Conserv 14:608–619CrossRefGoogle Scholar
  49. Janecka JE, Tewes ME, Laack LL, Caso A, Grassman LI Jr, Honeycutt RL (2014) Loss of genetic diversity among ocelots in the United States during the 20th century linked to human induced population reductions. PLoS ONE 9(2):e89384:1–e89384:10CrossRefGoogle Scholar
  50. Laack LL (1991) Ecology of the ocelot (Felis pardalis) in south Texas. Masters Thesis, Texas A&I University, Kingsville, USAGoogle Scholar
  51. Laack LL, Tewes ME, Haines AM, Rappole J (2005) Reproductive life history of ocelots Leopardus pardalis in southern Texas. Acta Theriol 50:505–514CrossRefGoogle Scholar
  52. Larivière S, Walton LR (1997) Lynx rufus. Mamm Species 563:1–8CrossRefGoogle Scholar
  53. Lee JS, Ruell EW, Boydston EE, Lyren LM, Alonso RS, Troyer JL, Crooks KR, VandeWoude S (2012) Gene flow and pathogen transmission among bobcats (Lynx rufus) in a fragmented urban landscape. Mol Ecol 21:1617–1631CrossRefPubMedGoogle Scholar
  54. MacArthur RH (1972) Geographical ecology. Princeton University Press, PrincetonGoogle Scholar
  55. Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220PubMedGoogle Scholar
  56. Menotti-Raymond M, David VA, Lyons LA, Schaffer AA, Tomlin JF, Hutton MK, O’Brien SJ (1999) A genetic linkage map of microsatellites in the domestic cat (Felis catus). Genomics 57:9–23CrossRefPubMedGoogle Scholar
  57. Murray JL, Gardner GL (1997) Leopardus pardalis. Mamm Species 548:10–16Google Scholar
  58. Nei M, Li WH (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Nat Acad Sci USA 76:5269–5273CrossRefPubMedPubMedCentralGoogle Scholar
  59. O’Brien SJ, Evermann JF (1988) Interactive influence of infectious disease and genetic diversity in natural populations. Trends Ecol Evol 3:254–259CrossRefPubMedGoogle Scholar
  60. O’Brien SJ, Roelke ME, Marker L, Newman A, Winkler CA, Meltzer D, Collym L, Evermann JF, Bush M, Wildt DE (1985) Genetic basis for species vulnerability in the cheetah. Science 227:1428–1434CrossRefPubMedGoogle Scholar
  61. O’Brien SJ, Martenson JS, Packer C, Herbst L, de Vos V, Joslin P, Ott-Joslin J, Wildt DE (1987) Biochemical genetic variation in geographic isolates of African and Asiatic lions. Nat Geogr Res 3:114–124Google Scholar
  62. Paetkau D, Slade R, Burden M, Estoup A (2004) Genetic assignment methods for the direct, real-time estimation of migration rate: a simulation-based exploration of accuracy and power. Mol Ecol 13:55–65CrossRefPubMedGoogle Scholar
  63. Palomares F, Godoy JA, Piriz A, O’Brien SJ, Johnson WE (2002) Faecal genetic analysis to determine the presence and distribution of elusive carnivores: design and feasibility for the Iberian lynx. Mol Ecol 11:2171–2182CrossRefPubMedGoogle Scholar
  64. Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28:2537–2539CrossRefPubMedPubMedCentralGoogle Scholar
  65. Price CV, Nakagaki NK, Hitt J, Clawges RC (2006) Enhanced historical land-use and land-cover data sets of the U.S. Geological Survey, U.S. Geological survey digital data series 240. [digital data set] http://pubs.usgs.gov/ds/2006/240
  66. Pritchard JK, Stephens M, Donnely P (2000) Inference of population structure from multilocus data. Genetics 155:945–949PubMedPubMedCentralGoogle Scholar
  67. Rannala B, Mountain JL (1997) Detecting immigration by using multilocus genotypes. Proc Nat Acad Sci USA 94:9197–9201CrossRefPubMedPubMedCentralGoogle Scholar
  68. Reding DM, Bronikowski AM, Johnson WE, Clark WR (2012) Pleistocene and ecological effects on continental-scale genetic differentiation in the bobcat (Lynx rufus). Mol Ecol 21:3078–3093CrossRefPubMedGoogle Scholar
  69. Reed DH, Frankham R (2003) Correlation between fitness and genetic diversity. Conserv Biol 17:230–237CrossRefGoogle Scholar
  70. Reed DH, Lowe EH, Briscoe DA, Frankham R (2003) Inbreeding and extinction: effects of rate of inbreeding. Conserv Genet 4:405–410CrossRefGoogle Scholar
  71. Rice JE (1989) Analyzing tables of statistical tests. Evolution 43:223–225CrossRefGoogle Scholar
  72. Riley SPD, Sauvajot RM, Fuller TK (2003) Effects of urbanization and habitat fragmentation on bobcats and coyotes in southern California. Conserv Biol 17:566–576CrossRefGoogle Scholar
  73. Riley SPD, Pollinger JP, Sauvajot RM (2006) A southern California freeway is a physical and social barrier to gene flow in carnivores. Mol Ecol 15:1733–1741CrossRefPubMedGoogle Scholar
  74. Riley SPD, Boydston EE, Crooks KR, Lyren LM (2010) Bobcats (Lynx rufus). In: Gehrt SD, Riley SPD, Cypher BL (eds) Urban carnivores: ecology, conflict, and conservation. Johns Hopkins University Press, Baltimore, pp 121–138Google Scholar
  75. Roelke ME, Martenson JS, O’Brien SJ (1993) The consequences of demographic reduction and genetic depletion in the endangered Florida panther. Curr Biol 3:340–350CrossRefPubMedGoogle Scholar
  76. Rogala JK, Hebblewhite M, Whittington J, White CA, Coleshill J, Musiani M (2011) Human activity differentially redistributes large mammals in the Canadian Rockies national parks. Ecol Soc 16:16Google Scholar
  77. Rosenzweig ML (1981) A theory of habitat selection. Ecology 62:327–335CrossRefGoogle Scholar
  78. Rozas J, Rozas R (1999) DnaSP version 3: an integrated program for molecular population genetics and molecular evolution analysis. Bioinformatics 15:174–175CrossRefPubMedGoogle Scholar
  79. Ruell EW, Riley SP, Douglas MR, Pollinger JP, Crooks KR (2009) Estimating bobcat population sizes and densities in a fragmented urban landscape using noninvasive capture-recapture sampling. J Mamm 90:129–135CrossRefGoogle Scholar
  80. Sanderson EW, Jaiteh M, Levy MA, Redford KH, Wannebo AV, Woolmer G (2002) The human footprint and the last of the wild. Bioscience 52:891–904CrossRefGoogle Scholar
  81. Schmidly DJ (2002) Texas natural history: a century of change. Texas Tech University Press, LubbockGoogle Scholar
  82. Schmidly DJ (2004) The mammals of Texas. University of Texas Press, AustinGoogle Scholar
  83. Schmidt K, Kowalczyk R, Ozolins J, Männil P, Fickel J (2009) Genetic structure of the Eurasian lynx population in north-eastern Poland and the Baltic states. Conserv Genet 10:497–501CrossRefGoogle Scholar
  84. Shindle DB, Tewes ME (1998) Woody species composition of habitats used by ocelots (Leopardus pardalis) in the Tamaulipan Biotic Province. Southwest Natt 43:273–279Google Scholar
  85. Shindle DB, Tewes ME (2000) Immobilization of wild ocelots with tiletamine and zolazepam in southern Texas. J Wildl Dis 36:546–550CrossRefPubMedGoogle Scholar
  86. Slatkin M, Barton NH (1989) A comparison of three indirect methods for estimating average levels of gene flow. Evolution 43:1349–1368CrossRefGoogle Scholar
  87. Sugg DW, Chesser RK, Dobson FS, Hoogland JL (1996) Population genetics meets behavioral ecology. Trends Ecol Evol 11:338–342CrossRefPubMedGoogle Scholar
  88. Sunquist ME, Sunquist F (2002) Wild cats of the world. University of Chicago Press, ChicagoGoogle Scholar
  89. Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595PubMedPubMedCentralGoogle Scholar
  90. Tewes ME (1986) Ecological and behavioral correlates of ocelot spatial patterns. Dissertation, University of Idaho, Moscow, USAGoogle Scholar
  91. Tewes ME, Everett DD (1986) Status and distribution of the endangered ocelot and jaguarundi in Texas. In: Miller SD, Everett DD (eds) Cats of the world: biology, conservation, and management. National Wildlife Federation, Washington, pp 147–158Google Scholar
  92. Thompson JD, Gibson TJ, Plewniak F, Jean-Mougin F, Higgins DG (1997) The CLUSTAL-X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882CrossRefPubMedPubMedCentralGoogle Scholar
  93. Tremblay TA, White WA, Raney JA (2005) Native woodland loss during the mid 1900s in Cameron County, Texas. Southwest Nat 50:479–487CrossRefGoogle Scholar
  94. United States Census Bureau (2010) Census. http://www.census.gov. Accessed 3 March 2015
  95. Uphyrkina O, Miquelle D, Quigley H, Driscoll C, O’Brien SJ (2002) Conserv genet of the Far Eastern leopard (Panthera pardus oreintalis). J Hered 93:303–311CrossRefPubMedGoogle Scholar
  96. Whittaker RJ (1998) Island biogeography: ecology, evolution, and conservation. Oxford University Press, OxfordGoogle Scholar
  97. Wildt DE, Bush M, Goodrowe KL, Packer C, Pusey AE, Brown JL, Joslin P, O’Brien SJ (1987) Reproductive and genetic consequences of founding isolated lion populations. Nature 329:328–331CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Jan E. Janecka
    • 1
  • Michael E. Tewes
    • 2
  • Imogene A. Davis
    • 3
  • Aaron M. Haines
    • 4
  • Arturo Caso
    • 5
  • Terry L. Blankenship
    • 6
  • Rodney L. Honeycutt
    • 7
  1. 1.Department of Biological SciencesDuquesne UniversityPittsburghUSA
  2. 2.Caesar Kleberg Wildlife InstituteTexas A&M University-KingsvilleKingsvilleUSA
  3. 3.Department of Life, Earth, and Environmental SciencesWest Texas A&M UniversityCanyonUSA
  4. 4.Applied Conservation Lab, Department of BiologyMillersville UniversityMillersvilleUSA
  5. 5.Proyecto Sobre los Felinos Silvestres de MexicoTampicoMexico
  6. 6.Rob & Bessie Welder Wildlife RefugeSintonUSA
  7. 7.Natural Science DivisionPepperdine UniversityMalibuUSA

Personalised recommendations