Conservation Genetics

, Volume 17, Issue 4, pp 839–846 | Cite as

Massive genetic introgression in threatened northern crested newts (Triturus cristatus) by an invasive congener (T. carnifex) in Western Switzerland

  • Christophe Dufresnes
  • Jérôme Pellet
  • Sandra Bettinelli-Riccardi
  • Jacques Thiébaud
  • Nicolas Perrin
  • Luca Fumagalli
Research Article

Abstract

Genetic pollution through introgressive hybridization of local species by exotic relatives is a major, yet neglected aspect of biological invasions, particularly in amphibians where human introductions are frequent. In Western Switzerland, crested newts make an interesting case: the Italian species Triturus carnifex was introduced at least a century ago within the range of the native and threatened T. cristatus. To understand the genetic consequences of this introduction and inform wildlife management authorities, we conducted a genetic survey on the remaining northern crested newt populations known in the area, using newly-developed species-diagnostic nuclear (microsatellites) and mitochondrial (control region) DNA markers. We documented massive nuclear introgression by the T. carnifex genome, which has completely replaced T. cristatus in most populations, especially in the Geneva area where the introduction was originally reported. However, many of these individuals retained the ancestral T. cristatus mtDNA, which could be explained by asymmetric introgression between the two species, stemming from demographic and/or selective processes. Analyses of genetic diversity support multiple events of T. carnifex releases, most-likely of proximate North Italian origin. We pinpointed the last indigenous populations in the region and recommend to prioritize their protection. Our study demonstrates the invasive potential of introduced taxa through introgressive hybridization, alerts about the underestimated rate of illegal amphibian translocations, and emphasizes the need for genetic analyses to monitor such invasions.

Keywords

Conservation Asymmetric reproductive isolation Hybridization Invasive species Amphibian Microsatellites mtDNA 

Supplementary material

10592_2016_825_MOESM1_ESM.pdf (60 kb)
Supplementary material 1 (PDF 60 kb)
10592_2016_825_MOESM2_ESM.pdf (145 kb)
Supplementary material 2 (PDF 144 kb)
10592_2016_825_MOESM3_ESM.pdf (328 kb)
Supplementary material 3 (PDF 328 kb)

References

  1. Allendorf FW, Leary RF, Spruell P, Wenburg JK (2001) The problems with hybrids: setting conservation guidelines. Trends Ecol Evol 16:613–622CrossRefGoogle Scholar
  2. Arntzen JW (2001) Genetic variation in the Italian crested newt, Triturus carnifex, and the origin of a non-native population north of the Alps. Biodivers Conserv 10:971–987CrossRefGoogle Scholar
  3. Arntzen JW, Thorpe RS (1999) Italian crested newts (Triturus carnifex) in the basin of Geneva: distribution and genetic interactions with autochthonous species. Herpetologica 55:423–433Google Scholar
  4. Austin JD, Gorman TA, Bishop D, Moler P (2011) Genetic evidence of contemporary hybridization in one of North America’s rarest anurans, the Florida bog frog. Anim Conserv 14:553–561CrossRefGoogle Scholar
  5. Barilani M, Sfougaris A, Giannakopoulos A et al (2007) Detecting introgressive hybridisation in rock partridge populations (Alectoris graeca) in Greece through Bayesian admixture analyses of multilocus genotypes. Conserv Genet 8:343–354CrossRefGoogle Scholar
  6. Brede E, Thorpe RS, Arntzen JW, Langton TES (2000) A morphometric study of a hybrid newt population (Triturus cristatus/T. carnifex): Beam Brook Nurseries, Surrey, U.K. Biol J Linn Soc 70:685–695CrossRefGoogle Scholar
  7. Broquet T, Berset-Braendli L, Emaresi G, Fumagalli L (2007) Buccal swabs allow efficient and reliable microsatellite genotyping in amphibians. Conserv Genet 8:509–511CrossRefGoogle Scholar
  8. Cabria MT, Michaux JR, Gómez-Moliner BJ et al (2011) Bayesian analysis of hybridization and introgression between the endangered european mink (Mustela lutreola) and the polecat (Mustela putorius). Mol Ecol 20:1176–1190CrossRefPubMedGoogle Scholar
  9. Canestrelli D, Salvi D, Maura M et al (2012) One species, three pleistocene evolutionary histories: phylogeography of the Italian crested newt, Triturus carnifex. PLoS One 7:e41754CrossRefPubMedPubMedCentralGoogle Scholar
  10. Currat M, Ruedi M, Petit RJ, Excoffier L (2008) The hidden side of invasions: massive introgression by local genes. Evolution 62:1908–1920PubMedGoogle Scholar
  11. Dubey S, Leuenberger J, Perrin N (2014) Multiple origins of invasive and “native” water frogs (Pelophylax spp.) in Switzerland. Biol J Linnean Soc 112:442–449CrossRefGoogle Scholar
  12. Dufresnes C, Perrin N (2015) Effect of biogeographic history on population vulnerability in European amphibians. Conserv Biol 29:1235–1240CrossRefPubMedGoogle Scholar
  13. Dufresnes C, Brelsford A, Crnobrnja-Isailović J et al (2015a) Timeframe of speciation inferred from secondary contact zones in the European tree frog radiation (Hyla arborea group). BMC Evol Biol 15:155CrossRefPubMedPubMedCentralGoogle Scholar
  14. Dufresnes C, Dubey S, Ghali K, et al (2015b) Introgressive hybridization of threatened European tree frogs (Hyla arborea) by introduced H. intermedia in Western Switzerland. Conserv Genet. In pressGoogle Scholar
  15. Earl DA, VonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361CrossRefGoogle Scholar
  16. Edgar P, Bird DR (2006) Action plan for the conservation of the crested newt Triturus cristatus species complex in Europe. The Herpetological Conservation Trust, StrasbourgGoogle Scholar
  17. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620CrossRefPubMedGoogle Scholar
  18. Excoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evol Bioinform 1:47–50Google Scholar
  19. Ferrantin T (2007) Facteurs influençant l’occupation des étangs par des tritons crêtés: l’espèce autochtone Triturus cristatus, l’espèce invasive Triturus carnifex et l’hybride cristatus-carnifex et leurs distributions dans les cantons de Genève et Vaud (Suisse). Master Thesis, University of Neuchâtel, Neuchâtel, SwitzerlandGoogle Scholar
  20. Fisher MC, Garner TWJ (2007) The relationship between the emergence of Batrachochytrium dendrobatidis, the international trade in amphibians and introduced amphibian species. Fungal Biol Rev 21:2–9CrossRefGoogle Scholar
  21. Fitzpatrick BM, Johnson JR, Kump DK et al (2010) Rapid spread of invasive genes into a threatened native species. Proc Natl Acad Sci 107:3606–3610CrossRefPubMedPubMedCentralGoogle Scholar
  22. Franzen M, Gruber HJ, Heckes U (2002) An allochtonous Triturus carnifex population in southern Bavaria (Germany). Salamandra 38:149–154Google Scholar
  23. Godinho R, Llaneza L, Blanco JC et al (2011) Genetic evidence for multiple events of hybridization between wolves and domestic dogs in the Iberian Peninsula. Mol Ecol 20:5154–5166CrossRefPubMedGoogle Scholar
  24. Grossenbacher K (1988) Atlas des amphibiens de Suisse. LSPN, BâleGoogle Scholar
  25. Grossenbacher K, Miaud C, Thiébaud J (2012) Triturus carnifex. In: Lescure J, de Massary JC (eds) Atlas des amphibiens et reptiles de France. Muséum national d’Histoire naturelle, Paris, p 272Google Scholar
  26. Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704CrossRefPubMedGoogle Scholar
  27. Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801–1806CrossRefPubMedGoogle Scholar
  28. Johnson JR, Fitzpatrick BM, Shaffer HB (2010) Retention of low-fitness genotypes over six decades of admixture between native and introduced tiger salamanders. BMC Evol Biol 10:147CrossRefPubMedPubMedCentralGoogle Scholar
  29. Jombart T (2008) Adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24:1403–1405CrossRefPubMedGoogle Scholar
  30. Klopfstein S, Currat M, Excoffier L (2006) The fate of mutations surfing on the wave of a range expansion. Mol Biol Evol 23:482–490CrossRefPubMedGoogle Scholar
  31. Krupa AP, Jehle R, Dawson DA et al (2002) Microsatellite loci in the crested newt (Triturus cristatus) and their utility in other newt taxa. Conserv Genet 3:87–89CrossRefGoogle Scholar
  32. Kyle CJ, Davison A, Strobeck C (2003) Genetic structure of European pine martens (Martes martes), and evidence for introgression with M. americana in England. Conserv Genet 4:179–188CrossRefGoogle Scholar
  33. Laikre L, Schwartz MK, Waples RS, Ryman N (2010) Compromising genetic diversity in the wild: unmonitored large-scale release of plants and animals. Trends Ecol Evol 25:520–529CrossRefPubMedGoogle Scholar
  34. Maletzky A, Mikulíček P, Franzen M et al (2008) Hybridization and introgression between two species of crested newts (Triturus cristatus and T. carnifex) along contact zones in Germany and Austria: morphological and molecular data. Herpetol J 18:1–15Google Scholar
  35. Maletzky A, Kaiser R, Mikulíček P (2010) Conservation genetics of crested newt species Triturus cristatus and T. carnifex within a contact zone in Central Europe: impact of interspecific introgression and gene flow. Diversity 2:28–46CrossRefGoogle Scholar
  36. Meilink WRM, Arntzen JW, van Delft JJCW, Wielstra B (2015) Genetic pollution of a threatened native crested newt species through hybridization with an invasive congener in the Netherlands. Biol Conserv 184:145–153CrossRefGoogle Scholar
  37. Meyer A, Zumbach S, Schmidt B, Monney J (2009) Les amphibiens et les reptiles de Suisse. Haupt Verlag BernGoogle Scholar
  38. Nylander JAA (2004) MrAIC.pl. Program distributed by the author. Evolutionary Biology Centre, Uppsala University, Uppsala, SwedenGoogle Scholar
  39. Oliveira R, Randi E, Mattucci F et al (2015) Toward a genome-wide approach for detecting hybrids: informative SNPs to detect introgression between domestic cats and European wildcats (Felis silvestris). Heredity 115:195–205CrossRefPubMedGoogle Scholar
  40. Petit RJ, Excoffier L (2009) Gene flow and species delimitation. Trends Ecol Evol 24:386–393CrossRefPubMedGoogle Scholar
  41. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedPubMedCentralGoogle Scholar
  42. Randi E, Lucchini V (2002) Detecting rare introgression of domestic dog genes into wild wolf (Canis lupus) populations by Bayesian admixture analyses of microsatellite variation. Conserv Genet 3:31–45CrossRefGoogle Scholar
  43. Randi E, Hulva P, Fabbri E et al (2014) Multilocus detection of wolf x dog hybridization in italy, and guidelines for marker selection. PLoS ONE 9:e86409CrossRefPubMedPubMedCentralGoogle Scholar
  44. Rosenberg NA (2003) DISTRUCT: a program for the graphical display of population structure. Mol Ecol Notes 4:137–138CrossRefGoogle Scholar
  45. Schmidt B, Zumbach S (2005) Liste rouge des espèces menacées en Suisse: Amphibiens. Haupt Verlag Bern, BernGoogle Scholar
  46. Senn HV, Barton NH, Goodman SJ et al (2010) Investigating temporal changes in hybridization and introgression in a predominantly bimodal hybridizing population of invasive sika (Cervus nippon) and native red deer (C. elaphus) on the Kintyre Peninsula, Scotland. Mol Ecol 19:910–924CrossRefPubMedGoogle Scholar
  47. Smith RK, Sutherland WJ (2014) Amphibian conservation: global evidence for the effects of interventions. Pelagic Publishing Ltd, ExeterGoogle Scholar
  48. van Oosterhout C, Hutchinson WF, Wills DP et al (2004) Micro-Checker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538CrossRefGoogle Scholar
  49. Wielstra B, Arntzen JW (2011) Unraveling the rapid radiation of crested newts (Triturus cristatus superspecies) using complete mitogenomic sequences. BMC Evol Biol 11:162CrossRefPubMedPubMedCentralGoogle Scholar
  50. Wielstra B, Crnobrnja-Isailović J, Litvinchuk SN et al (2013) Tracing glacial refugia of Triturus newts based on mitochondrial DNA phylogeography and species distribution modeling. Front Zool 10:13CrossRefPubMedPubMedCentralGoogle Scholar
  51. Wittenberg R (2005) An inventory of alien species and their threat to biodiversity and economy in Switzerland. CABI Bioscience Switzerland Centre report to the Swiss Agency for Environment, Forests and Landscape. The environment in practice n°0629. Federal Office for the Environment, BernGoogle Scholar
  52. Wyssmüller S (2007) Analyses expérimentales comparant la croissance et la survie des larves de triton crêté (Triturus cristatus) et des larves de l’hybride genevois (Triturus cristatus x Triturus carnifex). Master Thesis, University of Neuchâtel, SwitzerlandGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Christophe Dufresnes
    • 1
  • Jérôme Pellet
    • 2
  • Sandra Bettinelli-Riccardi
    • 1
  • Jacques Thiébaud
    • 3
  • Nicolas Perrin
    • 1
  • Luca Fumagalli
    • 1
  1. 1.Laboratory for Conservation Biology, Department of Ecology and EvolutionUniversity of LausanneLausanneSwitzerland
  2. 2.n+p Wildlife EcologyLausanneSwitzerland
  3. 3.KARCH-GE (Swiss Coordination Center for the Conservation of Amphibians and Reptiles—Geneva Regional Branch)GenevaSwitzerland

Personalised recommendations