Conservation Genetics

, Volume 17, Issue 3, pp 615–630 | Cite as

Adaptive and neutral genetic differentiation among Scottish and endangered Irish red grouse (Lagopus lagopus scotica)

  • Yvonne Meyer-Lucht
  • Kevin P. Mulder
  • Marianne C. James
  • Barry J. McMahon
  • Kieran Buckley
  • Stuart B. Piertney
  • Jacob Höglund
Research Article


Studying patterns of intra-specific genetic variation among populations allows for a better understanding of population structure and local adaptation. However, those patterns may differ according to the genetic markers applied, as neutral genetic markers reflect demographic processes and random genetic drift, whereas adaptive markers also carry the footprint of selection. In combination, neutral and adaptive genetic markers permit to assess the relative roles of drift and selection in shaping population structure. Among the best understood adaptive genetic loci are the genes of the major histocompatibility complex (MHC). We here study variation and differentiation at neutral SNP markers and MHC class II genes in red grouse (Lagopus lagopus scotica) from Ireland and Scotland. Irish red grouse populations are fragmented and drastically declining, but red grouse are abundant in Scotland. We find evidence for positive selection acting on the MHC genes and variation in MHC gene copy numbers among Irish individuals. Furthermore, there was significant population differentiation among red grouse from Ireland and Scotland at the neutral SNP markers (FST = 0.084) and the MHC-BLB genes (FST: BLB1 = 0.116, BLB2 = 0.090, BLB3 = 0.104). Differentiation at the MHC-BLB1 was significantly higher than at the neutral SNP markers, suggesting that selection plays an important role in shaping MHC variation, in addition to genetic drift. We speculate that the observed differentiation pattern might be due to local adaptation to different parasite regimes. These findings have strong conservation implications and we advise against the introduction of Scottish red grouse to supplement Irish populations.


Major histocompatibility complex Single locus amplification MHC BLB exon 2 Galliformes Local adaptation Genetic drift 



We are very thankful to Ahmed Sayadi for helping with the resampling procedures, to Gunilla Engström for support in the genetic lab, and to Magnus Johansson for helpful discussions. Moreover, we thank the four anonymous reviewers for helpful and constructive advice on this manuscript. Irish feather samples were collected all over Ireland by volunteers from the Irish Grey Partridge Conservation Trust, the National Association of Regional Games Councils of Ireland, the Irish National Park and Wildlife Service, BirdWatch Ireland and red grouse enthusiasts from the Republic of Ireland. We thank staff at the NERC Biomolecular Analysis Facility at Sheffield for SNP genotyping. This study was funded by the Carl Tryggers foundation, the Erasmus Mundus master program in Evolutionary Biology (MEME), the Helge Ax:son Johnson foundation, the Native Species Conservation Committee of Dublin Zoo, Fota Wildlife Park, the UK Natural Environment Research Council and the Swedish Research Council.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10592_2016_810_MOESM1_ESM.pdf (573 kb)
Supplementary material 1 (PDF 573 kb)
10592_2016_810_MOESM2_ESM.pdf (451 kb)
Supplementary material 2 (PDF 451 kb)


  1. Agudo R, Alcaide M, Rico C, Lemus JA, Blanco G, Hiraldo F, Donazar JA (2011) Major histocompatibility complex variation in insular populations of the Egyptian vulture: inferences about the roles of genetic drift and selection. Mol Ecol 20:2329–2340CrossRefPubMedGoogle Scholar
  2. Aguilar A, Roemer G, Debenham S, Binns M, Garcelon D, Wayne RK (2004) High MHC diversity maintained by balancing selection in an otherwise genetically monomorphic mammal. Proc Natl Acad Sci U S A 101:3490–3494CrossRefPubMedPubMedCentralGoogle Scholar
  3. Alcaide M, Munoz J, Martinez-de la Puente J, Soriguer R, Figuerola J (2014) Extraordinary MHC class II B diversity in a non-passerine, wild bird: the Eurasian Coot Fulica atra (Aves: Rallidae). Ecol Evol 4:688–698CrossRefPubMedPubMedCentralGoogle Scholar
  4. Allen D, Mellon C, Mawhinney K, Looney D, Milburne J (2005) The status of red grouse Lagopus lagopus in Northern Ireland 2004. Irish Birds 7:449–460Google Scholar
  5. Anisimova M, Nielsen R, Yang Z (2003) Effect of recombination on the accuracy of the likelihood method for detecting positive selection at amino acid sites. Genetics 164:1229–1236PubMedPubMedCentralGoogle Scholar
  6. Antao T, Lopes A, Lopes RJ, Beja-Pereira A, Luikart G (2008) LOSITAN: a workbench to detect molecular adaptation based on a F(st)-outlier method. BMC Bioinform 9:323CrossRefGoogle Scholar
  7. Axtner J, Sommer S (2007) Gene duplication, allelic diversity, selection processes and adaptive value of MHC class II DRB genes of the bank vole, Clethrionomys glareolus. Immunogenetics 59:417–426CrossRefPubMedGoogle Scholar
  8. Bayard De Volo S, Reynolds RT, Douglas MR, Antolin MF (2008) An improved extraction method to increase DNA yield from molted feathers. Condor 110:762–766CrossRefGoogle Scholar
  9. Beaumont MA, Nichols RA (1996) Evaluating loci for use in the genetic analysis of population structure. Proc R Soc Biol Sci Ser B 263:1619–1626CrossRefGoogle Scholar
  10. Bernatchez L, Landry C (2003) MHC studies in nonmodel vertebrates: what have we learned about natural selection in 15 years? J Evol Biol 16:363–377CrossRefPubMedGoogle Scholar
  11. Bird Life International (2012) Lagopus lagopus. The IUCN Red List of threatened species. Version 2014.2. Downloaded on 08 Oct 2014
  12. Bondinas GP, Moustakas AK, Papadopoulos GK (2007) The spectrum of HLA-DQ and HLA-DR alleles, 2006: a listing correlating sequence and structure with function. Immunogenetics 59:539–553CrossRefPubMedGoogle Scholar
  13. Bryja J, Charbonnel N, Berthier K, Galan M, Cosson JF (2007) Density-related changes in selection pattern for major histocompatibility complex genes in fluctuating populations of voles. Mol Ecol 16:5084–5097CrossRefPubMedGoogle Scholar
  14. Cattadori IM, Haydon DT, Hudson PJ (2005) Parasites and climate synchronize red grouse populations. Nature 433:737–741CrossRefPubMedGoogle Scholar
  15. Chaves LD, Krueth SB, Reed KM (2009) Defining the Turkey MHC: sequence and Genes of the B Locus. J Immunol 183:6530–6537CrossRefPubMedGoogle Scholar
  16. Cheng Y, Stuart A, Morris K, Taylor R, Siddle H, Deakin J, Jones M, Amemiya CT, Belov K (2012) Antigen-presenting genes and genomic copy number variations in the Tasmanian devil MHC. BMC Genomics 13:87CrossRefPubMedPubMedCentralGoogle Scholar
  17. Colhoun K, Cummins S (2013) Birds of conservation concern in Ireland 2014–2019. Irish Birds 9:523–544Google Scholar
  18. Cummins S, Bleasdale A, Douglas C, Newton S, O’Halloran J, Wilson HJ (2010) The status of red grouse in Ireland and the effects of land use, habitat and habitat quality on their distribution. Irish Wildl Man 50:1–96Google Scholar
  19. Do C, Waples RS, Peel D, Macbeth GM, Tillett BJ, Ovenden JR (2014) NeEstimator v2: re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Mol Ecol Res 14:209–214CrossRefGoogle Scholar
  20. Eimes JA, Bollmer JL, Whittingham LA, Johnson JA, Van Oosterhout C, Dunn PO (2011) Rapid loss of MHC class II variation in a bottlenecked population is explained by drift and loss of copy number variation. J Evol Biol 24:1847–1856CrossRefPubMedGoogle Scholar
  21. Eizaguirre C, Lenz TL (2010) Major histocompatibility complex polymorphism: dynamics and consequences of parasite-mediated local adaptation in fishes. J Fish Biol 77:2023–2047CrossRefPubMedGoogle Scholar
  22. Eizaguirre C, Lenz TL, Sommerfeld RD, Harrod C, Kalbe M, Milinski M (2011) Parasite diversity, patterns of MHC II variation and olfactory based mate choice in diverging three-spined stickleback ecotypes. Evol Ecol 25:605–622CrossRefGoogle Scholar
  23. Ekblom R, Saether SA, Jacobsson P, Fiske P, Sahlman T, Grahn M, Kalas JA, Hoglund J (2007) Spatial pattern of MHC class II variation in the great snipe (Gallinago media). Mol Ecol 16:1439–1451CrossRefPubMedGoogle Scholar
  24. Foll M, Gaggiotti O (2008) A genome-scan method to identify selected loci appropriate for both dominant and codominant markers: a Bayesian perspective. Genetics 180:977–993CrossRefPubMedPubMedCentralGoogle Scholar
  25. Fox A, Hudson PJ (2001) Parasites reduce territorial behaviour in red grouse (Lagopus lagopus scoticus). Ecol Lett 4:139–143CrossRefGoogle Scholar
  26. Frankham R (1995) Conservation genetics. Annu Rev Genet 29:305–327CrossRefPubMedGoogle Scholar
  27. Frankham R, Ballou JD, Briscoe DA (2002) Introduction to conservation genetics. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  28. Franklin IR, Frankham R (1998) How large must populations be to retain evolutionary potential? Anim Conserv 1:69–70CrossRefGoogle Scholar
  29. Freeland JR, Anderson S, Allen D, Looney D (2007) Museum samples provide novel insights into the taxonomy and genetic diversity of Irish red grouse. Conserv Genet 8:695–703CrossRefGoogle Scholar
  30. Galan M, Guivier E, Caraux G, Charbonnel N, Cosson JF (2010) A 454 multiplex sequencing method for rapid and reliable genotyping of highly polymorphic genes in large-scale studies. BMC Genomics 11:296CrossRefPubMedPubMedCentralGoogle Scholar
  31. Goudet J (2001) FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3).
  32. Goudet J (2005) HIERFSTAT, a package for R to compute and test hierarchical F-statistics. Mol Ecol Notes 5:184–186CrossRefGoogle Scholar
  33. Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321CrossRefPubMedGoogle Scholar
  34. Hedrick PW (2001) Conservation genetics: where are we now? Trends Ecol Evol 16:629–636CrossRefGoogle Scholar
  35. Hedrick PW (2005) A standardized genetic differentiation measure. Evolution 59:1633–1638CrossRefPubMedGoogle Scholar
  36. Höglund J (2009) Evolutionary conervation genetics. Oxford University Press, New YorkCrossRefGoogle Scholar
  37. Holmstad PR, Hudson PJ, Skorping A (2005) The influence of a parasite community on the dynamics of a host population: a longitudinal study on willow ptarmigan and their parasites. Oikos 111:377–391CrossRefGoogle Scholar
  38. Hosomichi K, Shiina T, Suzuki S, Tanaka M, Shimizu S, Iwamoto S, Hara H, Yoshida Y, Kulski JK, Inoko H, Hanzawa K (2006) The major histocompatibility complex (Mhc) class IIB region has greater genomic structural flexibility and diversity in the quail than the chicken. BMC Genomics 7:322CrossRefPubMedPubMedCentralGoogle Scholar
  39. IUCN/SSC (2013) Guidelines for reintroductions and other conservation translocations. Version 1.0. Gland, p. viiii + 57 ppGoogle Scholar
  40. Jaratlerdsiri W, Isberg SR, Higgins DP, Ho SYW, Salomonsen J, Skjodt K, Miles LG, Gongora J (2014) Evolution of MHC class I in the order Crocodylia. Immunogenetics 66:53–65CrossRefPubMedGoogle Scholar
  41. Johansson MP, McMahon BJ, Hoglund J, Segelbacher G (2012) Amplification success of multilocus genotypes from feathers found in the field compared with feathers obtained from shot birds. Ibis 154:15–20CrossRefGoogle Scholar
  42. Jombart T (2008) adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24:1403–1405CrossRefPubMedGoogle Scholar
  43. Kaufman J (2008) The avian MHC. In: Davison F, Kaspers B, Schat KA (eds) Avian immunology. Academic Press, OxfordGoogle Scholar
  44. Kaufman J, Milne S, Gobel TWF, Walker BA, Jacob JP, Auffray C, Zoorob R, Beck S (1999) The chicken B locus is a minimal essential major histocompatibility complex. Nature 401:923–925CrossRefPubMedGoogle Scholar
  45. Kiemnec-Tyburczy KM, Richmond JQ, Savage AE, Zamudio KR (2010) Selection, trans-species polymorphism, and locus identification of major histocompatibility complex class II beta alleles of New World ranid frogs. Immunogenetics 62:741–751CrossRefPubMedGoogle Scholar
  46. Klein J (1986) Natural history of the major histocompatibility complex. Wiley, New YorkGoogle Scholar
  47. Klein J, Bontrop RE, Dawkins RL, Erlich HA, Gyllensten UB, Heise ER, Jones PP, Parham P, Wakeland EK, Watkins DI (1990) Nomenclature for the major histocompatibility complexes of different species: a proposal. Immunogenetics 31:217–219PubMedGoogle Scholar
  48. Kosakovsky Pond SL, Frost SDW, Muse SV (2005) HyPhy: hypothesis testing using phylogenies. Bioinformatics 21:676–679CrossRefGoogle Scholar
  49. Kulski J, Shiina T, Anzai T, Kohara S, Inoko H (2002) Comparative genomic analysis of the MHC: the evolution of class I duplication blocks, diversity and complexity from shark to man. Immunol Rev 190:95–122CrossRefPubMedGoogle Scholar
  50. Kyle CJ, Rico Y, Castillo S, Srithayakumar V, Cullingham CI, White BN, Pond BA (2014) Spatial patterns of neutral and functional genetic variations reveal patterns of local adaptation in raccoon (Procyon lotor) populations exposed to raccoon rabies. Mol Ecol 23:2287–2298CrossRefPubMedGoogle Scholar
  51. Lenz TL, Becker S (2008) Simple approach to reduce PCR artefact formation leads to reliable genotyping of MHC and other highly polymorphic loci—implications for evolutionary analysis. Gene 427:117–123CrossRefPubMedGoogle Scholar
  52. Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452CrossRefPubMedGoogle Scholar
  53. Lighten J, Van Oosterhout C, Paterson IG, McMullan M, Bentzen P (2014) Ultra-deep Illumina sequencing accurately identifies MHC class IIb alleles and provides evidence for copy number variation in the guppy (Poecilia reticulata). Mol Ecol Res 14:753–767CrossRefGoogle Scholar
  54. Loiseau C, Richard M, Garnier S, Chastel O, Julliard R, Zoorob R, Sorci G (2009) Diversifying selection on MHC class I in the house sparrow (Passer domesticus). Mol Ecol 18:1331–1340CrossRefPubMedGoogle Scholar
  55. Lynch M, Lande R (1998) The critical effective size for a genetically secure population. Anim Conserv 1:70–72CrossRefGoogle Scholar
  56. McMahon BJ, Johansson MP, Piertney SB, Buckley K, Hoglund J (2012) Genetic variation among endangered Irish red grouse (Lagopus lagopus hibernicus) populations: implications for conservation and management. Conserv Genet 13:639–647CrossRefGoogle Scholar
  57. Miller HC, Allendorf F, Daugherty CH (2010) Genetic diversity and differentiation at MHC genes in island populations of tuatara (Sphenodon spp.). Mol Ecol 19:3894–3908CrossRefPubMedGoogle Scholar
  58. Mougeot F, Evans SA, Redpath SM (2005) Interactions between population processes in a cyclic species: parasites reduce autumn territorial behaviour of male red grouse. Oecologia 144:289–298CrossRefPubMedGoogle Scholar
  59. National Red Grouse Steering Commitee (2013) Red grouse species action plan 2013Google Scholar
  60. Nei M, Gu X, Sitnikova T (1997) Evolution by the birth-and-death process in multigene families of the vertebrate immune system. Proc Natl Acad Sci U S A 94:7799–7806CrossRefPubMedPubMedCentralGoogle Scholar
  61. Otting N, Heijmans CIC, Noort RC, de Groott NG, Doxiadis GGM, van Rood JJ, Watkinsn DI, Bontrop RE (2005) Unparalleled complexity of the MHC class I region in rhesus macaques. Proc Natl Acad Sci U S A 102:1626–1631CrossRefPubMedPubMedCentralGoogle Scholar
  62. Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28:2537–2539CrossRefPubMedPubMedCentralGoogle Scholar
  63. Piertney S, Oliver M (2006) The evolutionary ecology of the major histocompatibility complex. Heredity 96:7–21PubMedGoogle Scholar
  64. Piertney SB, MacColl ADC, Bacon PJ, Dallas JF (1998) Local genetic structure in red grouse (Lagopus lagopus scoticus): evidence from microsatellite DNA markers. Mol Ecol 7:1645–1654CrossRefPubMedGoogle Scholar
  65. Promerova M, Kralova T, Bryjova A, Albrecht T, Bryja J (2013) MHC class IIB exon 2 polymorphism in the grey partridge (Perdix perdix) is shaped by selection, recombination and gene conversion. PLoS One 8:e69135CrossRefPubMedPubMedCentralGoogle Scholar
  66. Prugnolle F, Manica A, Charpentier M, Guégan JF, Guernier V, Balloux F (2005) Pathogen-driven selection and worldwide HLA class I diversity. Curr Biol 15:1022–1027CrossRefPubMedGoogle Scholar
  67. Quintela M, Berlin S, Wang B, Hoglund J (2010) Genetic diversity and differentiation among Lagopus lagopus populations in Scandinavia and Scotland: evolutionary significant units confirmed by SNP markers. Mol Ecol 19:2380–2393CrossRefPubMedGoogle Scholar
  68. Raymond M, Rousset F (1995) GENEPOP (Version 1.2)—population genetics software for exact tests and ecumenicism. J Hered 86:248–249Google Scholar
  69. Redpath SM, Mougeot F, Leckie FM, Elston DA, Hudson PJ (2006) Testing the role of parasites in driving the cyclic population dynamics of a gamebird. Ecol Lett 9:410–418CrossRefPubMedGoogle Scholar
  70. Schad J, Voigt CC, Greiner S, Dechmann DKN, Sommer S (2012) Independent evolution of functional MHC class II DRB genes in New World bat species. Immunogenetics 64:535–547CrossRefPubMedGoogle Scholar
  71. Segelbacher G (2002) Noninvasive genetic analysis in birds: testing reliability of feather samples. Mol Ecol Notes 2:367–369Google Scholar
  72. Shaw I, Powell TJ, Marston DA, Baker K, van Hateren A, Riegert P, Wiles MV, Milne S, Beck S, Kaufman J (2007) Different evolutionary histories of the two classical class I genes BF1 and BF2 illustrate drift and selection within the stable MHC haplotypes of chickens. J Immunol 178:5744–5752CrossRefPubMedGoogle Scholar
  73. Shiina T, Shimizu S, Hosomichi K, Kohara S, Watanabe S, Hanzawa K, Beck S, Kulski JK, Inoko H (2004) Comparative genomic analysis of two avian (quail and chicken) MHC regions. J Immunol 172:6751–6763CrossRefPubMedGoogle Scholar
  74. Siddle HV, Marzec J, Cheng YY, Jones M, Belov K (2010) MHC gene copy number variation in Tasmanian devils: implications for the spread of a contagious cancer. Proc R Soc B 277:2001–2006CrossRefPubMedPubMedCentralGoogle Scholar
  75. Sommer S (2005) The importance of immune gene variability (MHC) in evolutionary ecology and conservation. Front Zool 2:16CrossRefPubMedPubMedCentralGoogle Scholar
  76. Spurgin LG, Richardson DS (2010) How pathogens drive genetic diversity: MHC, mechanisms and misunderstandings. Proc R Soc B 277:979–988CrossRefPubMedPubMedCentralGoogle Scholar
  77. Strand T, Westerdahl H, Höglund J, Alatalo RV, Siitari H (2007) The MHC class II of the black grouse (Tetrao tetrix) consists of low numbers of B and Y genes with variable diversity and expression. Immunogenetics 59:725–734CrossRefPubMedGoogle Scholar
  78. Strand TM, Segelbacher G, Quintela M, Xiao LY, Axelsson T, Hoglund J (2012) Can balancing selection on MHC loci counteract genetic drift in small fragmented populations of black grouse? Ecol Evol 2:341–353CrossRefPubMedPubMedCentralGoogle Scholar
  79. Strand T, Wang B, Meyer-Lucht Y, Hoglund J (2013) Evolutionary history of black grouse major histocompatibility complex class IIB genes revealed through single locus sequence-based genotyping. BMC Genet 14:29CrossRefPubMedPubMedCentralGoogle Scholar
  80. Stuglik MT, Radwan J, Babik W (2011) jMHC: software assistant for multilocus genotyping of gene families using next-generation amplicon sequencing. Mol Ecol Res 11:739CrossRefGoogle Scholar
  81. Taberlet P, Waits LP, Luikart G (1999) Noninvasive genetic sampling: look before you leap. Trends Ecol Evol 14:323–327CrossRefPubMedGoogle Scholar
  82. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739CrossRefPubMedPubMedCentralGoogle Scholar
  83. Tharme AP, Green RE, Baines D, Bainbridge IP, O’Brien M (2001) The effect of management for red grouse shooting on the population density of breeding birds on heather-dominated moorland. J Appl Ecol 38:439–457CrossRefGoogle Scholar
  84. van Oosterhout C, Joyce DA, Cummings SM, Blais J, Barson NJ, Ramnarine IW, Mohammed RS, Persad N, Cable J (2006) Balancing selection, random genetic drift, and genetic variation at the major histocompatibility complex in two wild populations of guppies (Poecilia reticulata). Evolution 60:2562–2574CrossRefPubMedGoogle Scholar
  85. Wang B, Ekblom R, Strand TM, Portela-Bens S, Hoglund J (2012) Sequencing of the core MHC region of black grouse (Tetrao tetrix) and comparative genomics of the galliform MHC. BMC Genomics 13:553CrossRefPubMedPubMedCentralGoogle Scholar
  86. Westerdahl H (2007) Passerine MHC: genetic variation and disease resistance in the wild. J Ornithol 148:S469–S477CrossRefGoogle Scholar
  87. Westerdahl H, Wittzell H, von Schantz T (2000) Mhc diversity in two passerine birds: no evidence far a minimal essential Mhc. Immunogenetics 52:92–100CrossRefPubMedGoogle Scholar
  88. Wittzell H, Bernot A, Auffray C, Zoorob R (1999) Concerted evolution of two Mhc class II B loci in pheasants and domestic chickens. Mol Biol Evol 16:479–490CrossRefPubMedGoogle Scholar
  89. Worley K, Gillingham M, Jensen P, Kennedy LJ, Pizzari T, Kaufman J, Richardson DS (2008) Single locus typing of MHC class I and class IIB loci in a population of red jungle fowl. Immunogenetics 60:233–247CrossRefPubMedGoogle Scholar
  90. Wright DJ, Spurgin LG, Collar NJ, Komdeur J, Burke T, Richardson DS (2014) The impact of translocations on neutral and functional genetic diversity within and among populations of the Seychelles warbler. Mol Ecol 23:2165–2177CrossRefPubMedPubMedCentralGoogle Scholar
  91. Yang ZH (2007) PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 24:1586–1591CrossRefPubMedGoogle Scholar
  92. Zagalska-Neubauer M, Babik W, Stuglik M, Gustafsson L, Cichon M, Radwan J (2010) 454 sequencing reveals extreme complexity of the class II major histocompatibility complex in the collared flycatcher. BMC Evol Biol 10:395CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Yvonne Meyer-Lucht
    • 1
  • Kevin P. Mulder
    • 1
    • 2
  • Marianne C. James
    • 3
    • 4
  • Barry J. McMahon
    • 5
  • Kieran Buckley
    • 6
  • Stuart B. Piertney
    • 3
  • Jacob Höglund
    • 1
  1. 1.Department of Ecology and Genetics, Animal Ecology, Evolutionary Biology CenterUppsala UniversityUppsalaSweden
  2. 2.CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do PortoVairãoPortugal
  3. 3.Institute of Biological and Environmental SciencesUniversity of AberdeenAberdeenUK
  4. 4.Food Standards Agency in ScotlandAberdeenUK
  5. 5.UCD School of Agriculture & Food ScienceUniversity College DublinDublin 4Ireland
  6. 6.National Parks and Wildlife Service, Department of Arts, Heritage & the GaeltachtDublin 4Ireland

Personalised recommendations