Conservation Genetics

, Volume 17, Issue 2, pp 321–335 | Cite as

Norfolk Island Robins are a distinct endangered species: ancient DNA unlocks surprising relationships and phenotypic discordance within the Australo-Pacific Robins

  • Anna M. KearnsEmail author
  • Leo Joseph
  • Lauren C. White
  • Jeremy J. Austin
  • Caitlin Baker
  • Amy C. Driskell
  • John F. Malloy
  • Kevin E. Omland
Research Article


Uncertain taxonomy hinders the effective prioritization of taxa for conservation. This problem is acute for understudied island populations in the southwest Pacific Ocean, which are increasingly threatened by habitat loss, predation and climate change. Here, we offer the first test of taxonomic limits and phylogenetic affinities of the iconic Pacific Robin radiation (Petroica multicolor) in order to prioritize the conservation of its nominotypical subspecies, the endangered Norfolk Island Robin (P. m. multicolor). We integrate phylogenetic analyses of ancient DNA and quantitative measures of plumage and morphometric variation to show that the Norfolk Island Robin should be recognized as a distinct species. Phenotypic and genetic datasets contradict the longstanding treatment of Pacific Robins (including Norfolk Island Robins) and Scarlet Robins (P. boodang) as a single species. Instead, we show that Norfolk Island Robins are deeply divergent from Scarlet Robins and have more genetic similarity to Red-capped Robins (P. goodenovii) than to other Pacific Robins. This finding is unrepresentative of the current taxonomic and conservation status of the Norfolk Island Robin, which we propose should be recognised as an endemic endangered species. Our study clearly shows that in the absence of contemporary tissues, ancient DNA approaches using historical museum specimens can address taxonomic questions that morphological traits are unable to resolve. Further, it highlights the need for similar studies of other threatened Norfolk fauna with uncertain taxonomic status in order to ensure appropriate conservation prioritization.


Ancient DNA Conservation genetics Endangered species Insular speciation Norfolk Island Pacific 



We thank the following institutions, collectors, collection managers, staff and curators for the specimens or sequences used in this study: Paul Sweet, Thomas Trombone, Lydia Garetano, Peter Capainolo and Chris Filardi at the American Museum of Natural History, Jean Woods at the Delaware Museum of Natural History, A. Townsend Peterson, Michael Andersen and Mark Robbins at the Kansas University Natural History Museum, David Steadman, Andrew Kratter and Tom Webber at the Ornithology Division of the Florida Museum of Natural History, Robb Brumfield and Donna Dittmann at the Louisiana State University Museum of Natural Sciences, Robert Palmer at the Australian National Wildlife Collection and Susanne Metcalfe at CSIRO Ecosystem Sciences, Gaynor Dolman at the Western Australian Museum, Joanna Sumner at the Museum of Victoria, Aude Thierry, Tammy Steeves and Jim Briskie at the University of Canterbury, and Sharon Birks at the University of Washington Burke Museum. We thank David Yeates, Kerensa McElroy and two anonymous reviewers for helpful comments. Allen Kearns helped measure specimens. Analyses were run on the UMBC High Performance Computing Facility and CIPRES. This research was funded by NSF grant DEB-1119506 to K. E. Omland and an Australian Biological Resources Study Churchill Fellowship to A. M. Kearns.

Supplementary material

10592_2015_783_MOESM1_ESM.docx (103 kb)
Supplementary material 1 (DOCX 102 kb)


  1. Andersen MJ, Oliveros CH, Filardi CE, Moyle RG (2013) Phylogeography of the Variable Dwarf-Kingfisher Ceyx lepidus (Aves: Alcedinidae) inferred from mitochondrial and nuclear DNA sequences. Auk 130:118–131. doi: 10.1525/auk.2012.12102 CrossRefGoogle Scholar
  2. Andersen MJ, Nyári ÁS, Mason I, Joseph L, Dumbacher JP, Filardi CE, Moyle RG (2014) Molecular systematics of the world’s most polytypic bird: the Pachycephala pectoralis/melanura (Aves: Pachycephalidae) species complex. Zoo J Linn Soc 170:566–588. doi: 10.1111/zoj.12088 CrossRefGoogle Scholar
  3. BirdLife International (2012) Petroica multicolor. In: IUCN 2013. IUCN red list of threatened species. Version 2013.2. Accessed 19 March 2015
  4. Boles W (2007) Family Petroicidae (Australasian Robins). In: del Hoyo J, Elliott A, Christie DA (eds) Handbook of the birds of the world, vol 12., Picathartes to Tits and ChickadeesLynx Edicions, Barcelona, pp 438–489Google Scholar
  5. Boon WM, Daugherty CH, Chambers GK (2001) The Norfolk Island green parrot and New Caledonian red-crowned parakeet are distinct species. Emu 101:113–121CrossRefGoogle Scholar
  6. Christidis L, Boles W (2008) Systematics and taxonomy of Australian birds. CSIRO Publishing, CollingwoodGoogle Scholar
  7. Christidis L, Irestedt M, Rowe D, Boles WE, Norman JA (2011) Mitochondrial and nuclear DNA phylogenies reveal a complex evolutionary history in the Australasian robins (Passeriformes: Petroicidae). Mol Phylogenet Evol 61:726–738. doi: 10.1016/j.ympev.2011.08.014 CrossRefPubMedGoogle Scholar
  8. Cibois A, Beadell JS, Graves GR, Pasquet E, Slikas B, Sonsthagen SA, Thibault J-C, Fleischer RC (2011) Charting the course of reed-warblers across the Pacific islands. J Biogeogr 38:1963–1975CrossRefGoogle Scholar
  9. Clegg SM, Degnan SM, Kikkawa J, Moritz C, Estoup A, Owens IP (2002) Genetic consequences of sequential founder events by an island-colonizing bird. Proc Natl Acad Sci USA 99:8127–8132. doi: 10.1073/pnas.102583399 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Commonwealth of Australia (2005) National recovery plan for the Norfolk Island Scarlet Robin Petroica multicolor multicolor and the Norfolk Island Golden Whistler Pachycephala pectoralis xanthoprocta. Department of the Environment and Heritage, CanberraGoogle Scholar
  11. de Queiroz K (2005) Ernst Mayr and the modern concept of species. Proc Natl Acad Sci USA 102(Suppl 1):6600–6607. doi: 10.1073/pnas.0502030102 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Department of the Environment (2015) Petroica multicolor multicolor in species profile and threats database, Department of the Environment, Canberra. Accessed 17 Mar 2015
  13. Director of National Parks (2010) Norfolk island region threatened species recovery plan. Department of the environment, water, heritage and the arts, Canberra. Accessed 21 Sept 2015
  14. Dutson GUY (2013) Population densities and conservation status of Norfolk Island forest birds. Bird Conserv Int 23:271–282. doi: 10.1017/s0959270912000081 CrossRefGoogle Scholar
  15. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797CrossRefPubMedPubMedCentralGoogle Scholar
  16. Estoup A, Clegg SM (2003) Bayesian inferences on the recent island colonization history by the bird Zosterops lateralis lateralis. Mol Ecol 12:657–674CrossRefPubMedGoogle Scholar
  17. Filardi CE, Moyle RG (2005) Single origin of a pan-Pacific bird group and upstream colonization of Australasia. Nature 438:216–219. doi: 10.1038/nature04057 CrossRefPubMedGoogle Scholar
  18. Garnett ST, Crowley GM (2000) The action plan for Australian birds 2000. Environment Australia, CanberraGoogle Scholar
  19. Futuyma D (1997) Evolutionary biology, 3rd edn. Sinauer associates, Sunderland, MAGoogle Scholar
  20. Garnett ST, Crowley G, Balmford A (2003) The costs and effectiveness of funding the conservation of Australian threatened birds. Bioscience 53:658–665CrossRefGoogle Scholar
  21. Garnett ST, Olsen P, Butchart SHM, Hoffmann AA (2011a) Did hybridization save the Norfolk Island boobook owl Ninox novaeseelandiae undulata? Oryx 45:500–504. doi: 10.1017/s0030605311000871 CrossRefGoogle Scholar
  22. Garnett ST, Szabo JK, Dutson G (2011b) The action plan for Australian birds 2010. CSIRO Publishing, MelbourneGoogle Scholar
  23. Gill FB (2014) Species taxonomy of birds: which null hypothesis? Auk 131:150–161. doi: 10.1642/auk-13-206.1 CrossRefGoogle Scholar
  24. Goldberg J, Trewick SA, Powlesland RG (2011) Population structure and biogeography of Hemiphaga pigeons (Aves: Columbidae) on islands in the New Zealand region. J Biogeogr 38:285–298. doi: 10.1111/j.1365-2699.2010.02414.x CrossRefGoogle Scholar
  25. Hebert PDN, Stoeckle MY, Zemlak TS, Francis CM (2004) Identification of birds through DNA barcodes. PLoS Biol 2:e312CrossRefPubMedPubMedCentralGoogle Scholar
  26. Hermes N (1985) Birds of Norfolk Island. Wonderland Publications, Norfolk IslandGoogle Scholar
  27. Hermes N, Evans O, Evans B (1986) Norfolk Island birds: a review. Notornis 33:141–149Google Scholar
  28. Higgins PJ, Peter JM (2002) Handbook of Australian, New Zealand & Antarctic birds. Vol. 6, pardalotes to shrike-thrushes. Oxford University Press, MelbourneGoogle Scholar
  29. Hill GE, McGraw KJ (2006) Bird coloration, vol I., Mechanisms and measurementsHarvard University Press, CambridgeGoogle Scholar
  30. Huelsenbeck JP, Ronquist F (2001) MRBAYES: bayesian inference of phylogenetic trees. Bioinformatics 17:754–755. doi: 10.1093/bioinformatics/17.8.754 CrossRefPubMedGoogle Scholar
  31. ICZN (International Code of Zoological Nomenclature) (1999) International Code of Zoological Nomenclature, 4th edn. International Trust for Zoological Nomenclature, LondonGoogle Scholar
  32. Irestedt M, Fabre PH, Batalha-Filho H, Jonsson KA, Roselaar CS, Sangster G, Ericson PG (2013) The spatio-temporal colonization and diversification across the Indo-Pacific by a ‘great speciator’ (Aves, Erythropitta erythrogaster). Proc R Soc B 280:20130309. doi: 10.1098/rspb.2013.0309 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Jones AW, Kennedy RS (2008) Plumage convergence and evolutionary history of the Island Thrush in the Philippines. Condor 110:35–44. doi: 10.1525/cond.2008.110.1.35 CrossRefGoogle Scholar
  34. Kass RE, Raftery AE (1995) Bayes factors. Journal of the American Statistical Association 90:773–795CrossRefGoogle Scholar
  35. Kearns AM, White LC, Austin JJ, Omland KE (2015) Distinctiveness of Pacific Robin subspecies in Vanuatu revealed from disparate patterns of sexual dichromatism, plumage colouration, morphometrics and ancient DNA. Emu 115:89–98CrossRefGoogle Scholar
  36. Keast A (1996) Pacific biogeography: patterns and process. In: Keast A, Miller SE (eds) The origin and evolution of Pacific island biotas, New Guinea to eastern Polynesia: patterns and processes. SPB Academic Publishing, Amsterdam, pp 477–512Google Scholar
  37. Keast A, Miller SE (1996) The origin and evolution of Pacific island biotas, New Guinea to eastern Polynesia: patterns and processes. SPB Academic Publishing, AmsterdamGoogle Scholar
  38. Keppel G, Morrison C, Watling D, Tuiwawa MV, Rounds IA (2012) Conservation in tropical Pacific Island countries: why most current approaches are failing. Conserv Lett 5:256–265. doi: 10.1111/j.1755-263X.2012.00243.x CrossRefGoogle Scholar
  39. Kimball RT et al (2009) A well-tested set of primers to amplify regions spread across the avian genome. Mol Phylogenet Evol 50:654–660. doi: 10.1016/j.ympev.2008.11.018 CrossRefPubMedGoogle Scholar
  40. Kingsford RT et al (2009) Major conservation policy issues for biodiversity in Oceania. Conserv Biol 23:834–840. doi: 10.1111/j.1523-1739.2009.01287.x CrossRefPubMedGoogle Scholar
  41. Lanfear R, Calcott B, Ho SY, Guindon S (2012) Partitionfinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Mol Biol Evol 29:1695–1701. doi: 10.1093/molbev/mss020 CrossRefPubMedGoogle Scholar
  42. LeCroy M (2008) Type specimens of birds in the American Museum of Natural History. Part 7. Passeriformes: Sylviidae, Muscicapidae, Platysteiridae, Maluridae, Acanthizidae, Monarchidae, Rhipiduridae, and Petroicidae. Bull Am Mus Nat Hist 313:1–287CrossRefGoogle Scholar
  43. Loynes K, Joseph L, Keogh JS (2009) Multi-locus phylogeny clarifies the systematics of the Australo-Papuan robins (Family Petroicidae, Passeriformes). Mol Phylogenet Evol 53:212–219. doi: 10.1016/j.ympev.2009.05.012 CrossRefPubMedGoogle Scholar
  44. Major R (1989) Reproductive output and recruitment of the Norfolk Island Scarlet Robin (Petroica multicolor multicolor). Phase II. Australian National Parks and Wildlife Service, Canberra. Unpublished reportGoogle Scholar
  45. Mayr E (1934) Birds collected during the Whitney South Sea Expedition. 29, Notes on the genus Petroica. Am Mus Novit 714:1–19Google Scholar
  46. Mayr E (1963) Animal species and evolution. Harvard university press, CambridgeGoogle Scholar
  47. Mayr E, Diamond J (2001) The birds of northern melanesia: speciation, ecology, and biogeography. Oxford university press, New YorkGoogle Scholar
  48. Miller HC, Lambert DM (2006) A molecular phylogeny of New Zealand’s Petroica (Aves: Petroicidae) species based on mitochondrial DNA sequences. Mol Phylogenet Evol 40:844–855. doi: 10.1016/j.ympev.2006.04.012
  49. Montgomerie R (2008) CLR, version 1.05. Queen’s University, Kingston, Canada.
  50. Moritz C (1994) Defining ‘Evolutionarily Significant Units’ for conservation. Trends Ecol Evol 9:373–375CrossRefPubMedGoogle Scholar
  51. Moyle RG, Filardi CE, Smith CE, Diamond J (2009) Explosive Pleistocene diversification and hemispheric expansion of a “great speciator”. Proc Natl Acad Sci USA 106:1863–1868. doi: 10.1073/pnas.0809861105 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Norman J, Olsen P, Christidis L (1998) Molecular genetics confirms taxonomic affinities of the endangered Norfolk Island Boobook Owl Ninox novaeseelandiae undulata. Biol Conserv 86:33–36CrossRefGoogle Scholar
  53. Nylander J, Ronquist F, Huelsenbeck J, Nieves-Aldrey J (2004) Bayesian phylogenetic analysis of combined data. Syst Biol 53:47–67. doi: 10.1080/10635150490264699 CrossRefPubMedGoogle Scholar
  54. Robinson D (1988) Ecology and management of the Scarlet Robin, White-breasted White-eye and Long-billed White-eye on Norfolk Island. Report to the Australian National Parks and Wildlife Service, Canberra. Unpublished reportGoogle Scholar
  55. Robinson D (1997) An evaluation of the status of the Norfolk island Robin following rat-control and weed-control works in the Norfolk island National Park. Environment Australia, Canberra. Unpublished reportGoogle Scholar
  56. Rozas J, Sanchez-DelBarrio JC, Messeguer X, Rozas R (2003) DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19:2496–2497. doi: 10.1093/bioinformatics/btg359 CrossRefPubMedGoogle Scholar
  57. Schodde R, Mason IJ (1999) The directory of Australian Birds: passerines. CSIRO, MelbourneGoogle Scholar
  58. Schodde R, Fullagar P, Hermes N (1983) A review of Norfolk Island birds: past and present. Australian National Parks and Wildlife Service Special Publication 8Google Scholar
  59. Şekercioğlu ÇH, Primack RB, Wormworth J (2012) The effects of climate change on tropical birds. Biol Conserv 148:1–18. doi: 10.1016/j.biocon.2011.10.019 CrossRefGoogle Scholar
  60. Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690. doi: 10.1093/bioinformatics/btl446 CrossRefPubMedGoogle Scholar
  61. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739. doi: 10.1093/molbev/msr121 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Tobias JA, Seddon N, Spottiswoode CN, Pilgrim JD, Fishpool LDC, Collar NJ (2010) Quantitative criteria for species delimitation. Ibis 152:724–746CrossRefGoogle Scholar
  63. Trewick SA, Gibb GC (2010) Vicars, tramps and assembly of the New Zealand avifauna: a review of molecular phylogenetic evidence. Ibis 152:226–253CrossRefGoogle Scholar
  64. Uy JA, Moyle RG, Filardi CE (2009a) Plumage and song differences mediate species recognition between incipient flycatcher species of the Solomon Islands. Evolution 63:153–164. doi: 10.1111/j.1558-5646.2008.00530.x CrossRefPubMedGoogle Scholar
  65. Uy JA, Moyle RG, Filardi CE, Cheviron ZA (2009b) Difference in plumage color used in species recognition between incipient species is linked to a single amino acid substitution in the melanocortin-1 receptor. Am Nat 174:244–254. doi: 10.1086/600084 CrossRefPubMedGoogle Scholar
  66. Voelker G, Rohwer S, Bowie RC, Outlaw DC (2007) Molecular systematics of a speciose, cosmopolitan songbird genus: defining the limits of, and relationships among, the Turdus thrushes. Mol Phylogenet Evol 42:422–434. doi: 10.1016/j.ympev.2006.07.016 CrossRefPubMedGoogle Scholar
  67. Wheeler QD, Meier R (2000) Species concepts and phylogenetic theory: a debate. Columbia University Press, New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Department of Biological SciencesUniversity of Maryland, Baltimore CountyBaltimoreUSA
  2. 2.Natural History MuseumUniversity of OsloOsloNorway
  3. 3.Australian National Wildlife CollectionCSIRO National Research Collections AustraliaCanberraAustralia
  4. 4.Australian Centre for Ancient DNA, School of Earth and Environmental Sciences and Environment InstituteUniversity of AdelaideAdelaideAustralia
  5. 5.Sciences DepartmentMuseum VictoriaMelbourneAustralia
  6. 6.Museum of Comparative Zoology, Department of Organismic and Evolutionary BiologyHarvard UniversityCambridgeUSA
  7. 7.Laboratories of Analytical Biology, National Museum of Natural HistorySmithsonian InstitutionWashington, D.C.USA

Personalised recommendations