Conservation Genetics

, Volume 17, Issue 2, pp 267–278 | Cite as

Landscape genetics of a tropical rescue pollinator

  • Rodolfo Jaffé
  • Antonio Castilla
  • Nathaniel Pope
  • Vera Lucia Imperatriz-Fonseca
  • Jean Paul Metzger
  • Maria Cristina Arias
  • Shalene Jha
Research Article

Abstract

Pollination services are increasingly threatened by the loss and modification of natural habitats, posing a risk to the maintenance of both native plant biodiversity and agricultural production. In order to safeguard pollination services, it is essential to examine the impacts of habitat degradation on the population dynamics of key pollinators and identify potential “rescue pollinators” capable of persisting in these human-altered landscapes. Using a landscape genetic approach, we assessed the impact of landscape structure on genetic differentiation in the widely-distributed tropical stingless bee Trigona spinipes (Apidae: Meliponini) across agricultural landscape mosaics composed of coffee plantations and Atlantic forest fragments in southeastern Brazil. We genotyped 115 bees at 16 specific and highly polymorphic microsatellite loci, developed using next-generation sequencing. Our results reveal that T. spinipes is capable of dispersing across remarkably long distances, as we did not find genetic differentiation across a 200 km range, nor fine-scale spatial genetic structure. Furthermore, gene flow was not affected by forest cover, land cover, or elevation, indicating that reproductive individuals are able to disperse well through agricultural landscapes and across altitudinal gradients. We also found evidence of a recent population expansion, suggesting that this opportunistic stingless bee is capable of colonizing degraded habitats. Our results thus suggest that T. spinipes can persist in heavily-altered landscapes and can be regarded as a rescue pollinator, potentially compensating for the decline of other native pollinators in degraded tropical landscapes.

Keywords

Agricultural landscapes Tropical forest cover Gene flow Landscape resistance Pollination services Stingless bees 

Supplementary material

10592_2015_779_MOESM1_ESM.xlsx (61 kb)
Supplementary material 1 (XLSX 60 kb) GeneBank accession numbers and detailed information for all microsatellite loci
10592_2015_779_MOESM2_ESM.xlsx (30 kb)
Supplementary material 2 (XLSX 29 kb) Spatial coordinates, final genotypes, land cover legends, and raster resolutions
10592_2015_779_MOESM3_ESM.docx (169 kb)
Supplementary material 3 (DOCX 169 kb) Correlograms showing the relationship between the different resistance distances
10592_2015_779_MOESM4_ESM.docx (699 kb)
Supplementary material 4 (DOCX 698 kb) STRUCTURE results showing the most likely number of populations represented in our sample (optimal K)
10592_2015_779_MOESM5_ESM.docx (236 kb)
Supplementary material 5 (DOCX 235 kb) Per locus and multi-locus distribution of allele frequencies and BOTTLENECK test for heterozygosity excess
10592_2015_779_MOESM6_ESM.docx (1.1 mb)
Supplementary material 6 (DOCX 1168 kb) Additional methods and results from the MSVAR analyses
10592_2015_779_MOESM7_ESM.docx (19 kb)
Supplementary material 7 (DOCX 19 kb) Model selection summary and summary statistics of the best alternative MLPE models

References

  1. ABIC (2012) Indicadores da indústria de café no Brasil—2012. Associação Brasileira da Indústria de Café, Rio de JaneiroGoogle Scholar
  2. Aizen MA, Feinsinger P (1994) Forest fragmentation, pollination, and plant reproduction in a Chaco dry forest. Argent Ecol 75:330–351CrossRefGoogle Scholar
  3. Aizen MA, Harder LD (2009) The global stock of domesticated honey bees is growing slower than agricultural demand for pollination. Curr Biol 19:915–918. doi:10.1016/j.cub.2009.03.071 CrossRefPubMedGoogle Scholar
  4. Allendorf FW, Luikart GH, Aitken SN (2012) Conservation and the genetics of populations, vol 2. Wiley-Blackwell, West SussexGoogle Scholar
  5. Araújo E, Costa M, Chaud-Netto J, Fowler H (2004) Body size and flight distance in stingless bees (Hymenoptera: Meliponini): inference of flight range and possible ecological implications Braz. J Biol 64:563–568Google Scholar
  6. Beaumont MA (1999) Detecting population expansion and decline using microsatellites. Genetics 153:2013–2029PubMedPubMedCentralGoogle Scholar
  7. Biesmeijer JC, Slaa EJ (2006) The structure of eusocial bee assemblages in Brazil. Apidologie 37:240–258CrossRefGoogle Scholar
  8. Boreux V, Krishnan S, Cheppudira KG, Ghazoul J (2013) Impact of forest fragments on bee visits and fruit set in rain-fed and irrigated coffee agro-forests Agriculture. Ecosyst Environ 172:42–48. doi:10.1016/j.agee.2012.05.003 CrossRefGoogle Scholar
  9. Brosi BJ, Daily GC, Shih TM, Oviedo F, Durán G (2008) The effects of forest fragmentation on bee communities in tropical countryside. J Appl Ecol 45:773–783. doi:10.1111/j.1365-2664.2007.01412.x CrossRefGoogle Scholar
  10. Brown JC, Oliveira M (2013) The impact of agricultural colonization and deforestation on stingless bee (Apidae: Meliponini) composition and richness in Rondônia, Brazil. Apidologie. doi:10.1007/s13592-013-0236-3 Google Scholar
  11. Brown MJF, Paxton RJ (2009) The conservation of bees: a global perspective. Apidologie 40:410–416. doi:10.1051/apido/2009019 CrossRefGoogle Scholar
  12. Bruno C, Macchiavelli R, Balzarini M (2008) Non-parametric smoothing of multivariate genetic distances in the analysis of spatial population structure at fine scale. Theor Appl Genet 117:435–447CrossRefPubMedGoogle Scholar
  13. Cerna K, Straka J, Munclinger P (2013) Population structure of pioneer specialist solitary bee Andrena vaga (Hymenoptera: Andrenidae) in central Europe: the effect of habitat fragmentation or evolutionary history? Conserv Genet 14:875–883. doi:10.1007/s10592-013-0482-y CrossRefGoogle Scholar
  14. Clarke RT, Rothery P, Raybould AF (2002) Confidence limits for regression relationships between distance matrices: estimating gene flow with distance. J Agric Biol Environ Stat 7:361–372CrossRefGoogle Scholar
  15. Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2014PubMedPubMedCentralGoogle Scholar
  16. da Unesc CA (2008) O Uso de Diferentes Métodos para Amostragem da Fauna de Abelhas (Hymenoptera: Apoidea), um Estudo em Floresta Ombrófila Mista em Santa Catarina. Neotrop Entomol 37:265–278CrossRefGoogle Scholar
  17. Davis ES, Murray TE, Fitzpatrick Ú, Brown MJF, Paxton RJ (2010) Landscape effects on extremely fragmented populations of a rare solitary bee, Colletes floralis. Mol Ecol 19:4922–4935. doi:10.1111/j.1365-294X.2010.04868.x CrossRefPubMedGoogle Scholar
  18. De Marco Jr P, Coelho FM (2004) Services performed by the ecosystem: forest remnants influence agricultural cultures’ pollination and production. Biodivers Conserv 13:1245–1255CrossRefGoogle Scholar
  19. Dick CW (2001) Genetic rescue of remnant tropical trees by an alien pollinator. Proc R Soc Lond Ser B 268:2391–2396CrossRefGoogle Scholar
  20. Donald PF (2004) Biodiversity impacts of some agricultural commodity production systems. Conserv Biol 18:17–38CrossRefGoogle Scholar
  21. Duarte OMP, Gaiotto FA, Costa MA (2014) Genetic differentiation in the Stingless Bee, Scaptotrigona xanthotricha Moure, 1950 (Apidae, Meliponini): a species with wide geographic distribution in the Atlantic rainforest. J Hered 105:477–484. doi:10.1093/jhered/esu031 CrossRefGoogle Scholar
  22. Dyer R (2014) gstudio: Analyses and functions related to the spatial analysis of genetic marker data, 1.3Google Scholar
  23. Engels W, Imperatriz-Fonseca VL (1990) Caste development, reproductive strategies, and control of fertility in honey bees and stingless bees. In: Engels W (ed) Social insects: an evolutionary approach to castes and reproduction. Springer, Berlin/Heidelberg, pp 167–230CrossRefGoogle Scholar
  24. Excoffier L, Foll M, Petit RJ (2009) Genetic consequences of range expansions. Annu Rev Ecol Evol Syst 40:481–501CrossRefGoogle Scholar
  25. Francisco FO, Santiago LR, Brito RM, Oldroyd BP, Arias MC (2014) Hybridization and asymmetric introgression between Tetragonisca angustula and Tetragonisca fiebrigi. Apidologie 45:1–9CrossRefGoogle Scholar
  26. Freiria G, Ruim J, Souza R, Sofia S (2012) Population structure and genetic diversity of the orchid bee Eufriesea violacea (Hymenoptera, Apidae, Euglossini) from Atlantic Forest remnants in southern and southeastern Brazil. Apidologie 43:392–402. doi:10.1007/s13592-011-0104-y CrossRefGoogle Scholar
  27. Gallai N, Salles J-M, Settele J, Vaissière BE (2009) Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecol Econ 68:810–821CrossRefGoogle Scholar
  28. Garibaldi LA, Aizen MA, Klein AM, Cunningham SA, Harder LD (2011) Global growth and stability of agricultural yield decrease with pollinator dependence. PNAS 108:5909–5914CrossRefPubMedPubMedCentralGoogle Scholar
  29. Garibaldi LA et al (2013) Wild pollinators enhance fruit set of crops regardless of honey bee abundance. Science. doi:10.1126/science.1230200 PubMedGoogle Scholar
  30. Gelman A, Rubin DB (1992) Inference from iterative simulation using multiple sequences. Stat Sci 7:457–511CrossRefGoogle Scholar
  31. Giannini TC, Acosta AL, Garófalo CA, Saraiva AM, Alves-dos-Santos I, Imperatriz-Fonseca VL (2012) Pollination services at risk: bee habitats will decrease owing to climate change in Brazil. Ecol Model 244:127–131CrossRefGoogle Scholar
  32. Giannini T, Boff S, Cordeiro G, Cartolano E Jr, Veiga A, Imperatriz-Fonseca V, Saraiva A (2014) Crop pollinators in Brazil: a review of reported interactions. Apidologie 46:209–223. doi:10.1007/s13592-014-0316-z CrossRefGoogle Scholar
  33. Giannini TC, Cordeiro G, Freitas B, Saraiva A, Imperatriz-Fonseca V (2015a) The dependence of crops for pollinators and the economic value of pollination in Brazil. J Econ Entomol 108:849–857. doi:10.1093/jee/tov093 CrossRefPubMedGoogle Scholar
  34. Giannini TC, Garibaldi LG, Acosta AL, Silva JS, Maia KP, Saraiva AM, Guimarães PR, Kleinert AMP (2015b) Native and non-native supergeneralist bee species have different effects on plant-bee networks. PLoS One 10:e0137198CrossRefPubMedPubMedCentralGoogle Scholar
  35. Giannini TC, Tambosi LR, Acosta AL, Jaffe R, Saraiva AM, Imperatriz Fonseca VL, Metzger JP (2015c) Safeguarding ecosystem services: a methodological framework to buffer the joint effect of habitat configuration and climate change. PLoS One 10:e0129225CrossRefPubMedPubMedCentralGoogle Scholar
  36. Girod C, Vitalis R, Leblois R, Fréville H (2011) Inferring population decline and expansion from microsatellite data: a simulation-based evaluation of the Msvar method. Genetics 188:165–179CrossRefPubMedPubMedCentralGoogle Scholar
  37. González-Varo JP et al (2013) Combined effects of global change pressures on animal-mediated pollination. Trends Ecol Evol 28:524–530. doi:10.1016/j.tree.2013.05.008 CrossRefPubMedGoogle Scholar
  38. Goulson D et al (2010) Effects of land use at a landscape scale on bumblebee nest density and survival. J Appl Ecol 47:1207–1215. doi:10.1111/j.1365-2664.2010.01872.x CrossRefGoogle Scholar
  39. Gruber K, Schöning C, Otte M, Kinuthia W, Hasselmann M (2013) Distinct subspecies or phenotypic plasticity? Genetic and morphological differentiation of mountain honey bees in East Africa. Ecol Evol 3:3204–3218PubMedPubMedCentralGoogle Scholar
  40. Hadley AS, Betts MG (2011) The effects of landscape fragmentation on pollination dynamics: absence of evidence not evidence of absence. Biol Rev 87:526–544CrossRefPubMedGoogle Scholar
  41. Hansen MC et al (2013) High-resolution global maps of 21st-century forest cover change. Science 342:850–853. doi:10.1126/science.1244693 CrossRefPubMedGoogle Scholar
  42. Hardy OJ, Vekemans X (2002) SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes 2:618–620CrossRefGoogle Scholar
  43. Hijmans R (2014) raster: Geographic data analysis and modeling., 2.2-31Google Scholar
  44. Inoue T, Sakagami SF, Salmah S, Yamane S (1984) The process of colony multiplication in the Sumatran stingless bee Trigona (Tetragonula) laeviceps. Biotropica 16:100–111CrossRefGoogle Scholar
  45. Jaffé R et al (2010) Estimating the density of honeybee colonies across their natural range to fill the gap in pollinator decline censuses. Conserv Biol 24:583–593. doi:10.1111/j.1523-1739.2009.01331.x CrossRefPubMedGoogle Scholar
  46. Jaffé R et al (2014) Monogamy in large bee societies: a stingless paradox. Naturwissenschaften 101:261–264. doi:10.1007/s00114-014-1149-3 CrossRefPubMedGoogle Scholar
  47. Jha S (2015) Contemporary human-altered landscapes and oceanic barriers reduce bumble bee gene flow. Mol Ecol 24:993–1006CrossRefPubMedGoogle Scholar
  48. Jha S, Kremen C (2013a) Resource diversity and landscape-level homogeneity drive native bee foraging. PNAS 110:555–558. doi:10.1073/pnas.1208682110 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Jha S, Kremen C (2013b) Urban land use limits regional bumble bee gene flow. Mol Ecol 22:2483–2495. doi:10.1111/mec.12275 CrossRefPubMedGoogle Scholar
  50. Jha S, Vandermeer J (2010) Impacts of coffee agroforestry management on tropical bee communities. Biol Conserv 143:1423–1431CrossRefGoogle Scholar
  51. Jha S, Bacon CM, Philpott SM, Ernesto Méndez V, Läderach P, Rice RA (2014) Shade coffee: update on a disappearing refuge for biodiversity. Bioscience. doi:10.1093/biosci/biu038 Google Scholar
  52. Joly CA, Metzger JP, Tabarelli M (2014) Experiences from the Brazilian Atlantic Forest: ecological findings and conservation initiatives. New Phytol 204:459–473CrossRefPubMedGoogle Scholar
  53. Jones OR, Wang J (2010) COLONY: a program for parentage and sibship inference from multilocus genotype data. Mol Ecol Resour 10:551–555CrossRefPubMedGoogle Scholar
  54. Jost L (2008) GST and its relatives do not measure differentiation. Mol Ecol 17:4015–4026CrossRefPubMedGoogle Scholar
  55. Kalinowski ST (2005) hp-rare 1.0: a computer program for performing rarefaction on measures of allelic richness. Mol Ecol Notes 5:187–189CrossRefGoogle Scholar
  56. Kennedy CM et al (2013) A global quantitative synthesis of local and landscape effects on wild bee pollinators in agroecosystems. Ecol Lett 16:584–599. doi:10.1111/ele.12082 CrossRefPubMedGoogle Scholar
  57. Klein AM (2009) Nearby rainforest promotes coffee pollination by increasing spatio-temporal stability in bee species richness. For Ecol Manag 258:1838–1845CrossRefGoogle Scholar
  58. Klein AM, Steffan-Dewenter I, Tscharntke T (2003) Fruit set of highland coffee increases with the diversity of pollinating bees. Proc R Soc Lond Ser B 270:955–961CrossRefGoogle Scholar
  59. Klein AM, Cunningham SA, Bos M, Steffan-Dewenter I (2008) Advances in pollination ecology from tropical plantation crops. Ecology 89:935–943. doi:10.1890/07-0088.1 CrossRefPubMedGoogle Scholar
  60. Kremen C et al (2007) Pollination and other ecosystem services produced by mobile organisms: a conceptual framework for the effects of land-use change. Ecol Lett 10:299–314CrossRefPubMedGoogle Scholar
  61. Laurance WF, Sayer J, Cassman KG (2014) Agricultural expansion and its impacts on tropical nature. Trends Ecol Evol. doi:10.1016/j.tree.2013.12.001 Google Scholar
  62. Lautenbach S, Seppelt R, Liebscher J, Dormann CF (2012) Spatial and temporal trends of global pollination benefit. PLoS One 7:e35954CrossRefPubMedPubMedCentralGoogle Scholar
  63. Lozier JD, Strange JP, Stewart IJ, Cameron SA (2011) Patterns of range-wide genetic variation in six North American bumble bee (Apidae: Bombus) species. Mol Ecol 20:4870–4888. doi:10.1111/j.1365-294X.2011.05314.x CrossRefPubMedGoogle Scholar
  64. McRae BH (2006) Isolation by resistance. Evolution 60:1551–1561. doi:10.1111/j.0014-3820.2006.tb00500.x CrossRefPubMedGoogle Scholar
  65. McRae BH, Dickson BG, Keitt TH, Shah VB (2008) Using circuit theory to model connectivity in ecology, evolution, and conservation. Ecology 89:2712–2724. doi:10.1890/07-1861.1 CrossRefPubMedGoogle Scholar
  66. Ngo HT, Mojica AC, Packer L (2011) Coffee plant—pollinator interactions: a review. Can J Zool 89:647–660. doi:10.1139/z11-028 CrossRefGoogle Scholar
  67. Nogueira-Neto P (1997) Vida e Criação de Abelhas Indígenas Sem Ferrão. Editora Nogueirapis, São PauloGoogle Scholar
  68. Ollerton J, Winfree R, Tarrant S (2011) How many flowering plants are pollinated by animals? Oikos 120:321–326. doi:10.1111/j.1600-0706.2010.18644.x CrossRefGoogle Scholar
  69. Peterman WE, Connette GM, Semlitsch RD, Eggert LS (2014) Ecological resistance surfaces predict fine-scale genetic differentiation in a terrestrial woodland salamander. Mol Ecol 23:2402–2413. doi:10.1111/mec.12747 CrossRefPubMedGoogle Scholar
  70. Pinheiro J, Bates D, DebRoy S, Sarkar D (2014) nlme: Linear and nonlinear mixed effects models, 3.1-117Google Scholar
  71. Piry S, Luikart G, Cornuet J-M (1999) Computer note. BOTTLENECK: a computer program for detecting recent reductions in the effective size using allele frequency data. J Hered 90:502–503. doi:10.1093/jhered/90.4.502 CrossRefGoogle Scholar
  72. Potts SG, Biesmeijer JC, Kremen C, Neumann P, Schweiger O, Kunin WE (2010) Global pollinator declines: trends, impacts and drivers. Trends Ecol Evol 25:345–353CrossRefPubMedGoogle Scholar
  73. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945PubMedPubMedCentralGoogle Scholar
  74. Ribeiro MC, Metzger JP, Martensen AC, Ponzoni FJ, Hirota MM (2009) The Brazilian Atlantic Forest: how much is left, and how is the remaining forest distributed? Implications for conservation. Biol Conserv 142:1141–1153CrossRefGoogle Scholar
  75. Ricketts TH (2004) Tropical forest fragments enhance pollinator activity in nearby coffee crops. Conserv Biol 18:1262–1271. doi:10.1111/j.1523-1739.2004.00227.x CrossRefGoogle Scholar
  76. Ricketts TH et al (2008) Landscape effects on crop pollination services: are there general patterns? Ecol Lett 11:499–515CrossRefPubMedGoogle Scholar
  77. Roubik DW (1992) Ecology and natural history of tropical bees. Cambridge University Press, CambridgeGoogle Scholar
  78. Rousset F (2000) Genetic differentiation between individuals. J Evol Biol 13:58–62. doi:10.1046/j.1420-9101.2000.00137.x CrossRefGoogle Scholar
  79. Rousset F (2008) genepop’007: a complete re-implementation of the genepop software for Windows and Linux. Mol Ecol Resour 8:103–106CrossRefPubMedGoogle Scholar
  80. Schuelke M (2000) An economic method for the fluorescent labeling of PCR fragments. Nat Biotechnol 18:233–234CrossRefPubMedGoogle Scholar
  81. Shackleton K, Al Toufailia H, Balfour N, Nascimento F, Alves D, Ratnieks FW (2015) Appetite for self-destruction: suicidal biting as a nest defense strategy in Trigona stingless bees. Behav Ecol Sociobiol 69:273–281. doi:10.1007/s00265-014-1840-6 CrossRefPubMedPubMedCentralGoogle Scholar
  82. Shirk A, Wallin D, Cushman S, Rice C, Warheit K (2010) Inferring landscape effects on gene flow: a new model selection framework. Mol Ecol 19:3603–3619CrossRefPubMedGoogle Scholar
  83. Stephens PA, Sutherland WJ (1999) Consequences of the Allee effect for behaviour, ecology and conservation. Trends Ecol Evol 14:401–405CrossRefPubMedGoogle Scholar
  84. Suni SS, Bronstein JL, Brosi BJ (2014) Spatio-temporal genetic structure of a tropical bee species suggests high dispersal over a fragmented landscape. Biotropica 46:202–209. doi:10.1111/btp.12084 CrossRefPubMedPubMedCentralGoogle Scholar
  85. Tavares M et al (2013) Genetic variability and population structure in Melipona scutellaris (Hymenoptera: Apidae) from Bahia, Brazil, based on molecular markers. Apidologie 44:720–728. doi:10.1007/s13592-013-0220-y CrossRefGoogle Scholar
  86. Vaissière B, Freitas BM, Gemmill-Herren B (2011) Protocol to detect and assess pollination deficits in crops: a handbook for its use FAO, RomeGoogle Scholar
  87. Van Oosterhout C, Hutchinson WF, Wills DP, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538CrossRefGoogle Scholar
  88. Van Strien MJ, Keller D, Holderegger R (2012) A new analytical approach to landscape genetic modelling: least-cost transect analysis and linear mixed models. Mol Ecol 21:4010–4023CrossRefGoogle Scholar
  89. van Veen JW, Sommeijer MJ (2000) Colony reproduction in Tetragonisca angustula (Apidae, Meliponini). Insectes Soc 47:70–75. doi:10.1007/s000400050011 CrossRefGoogle Scholar
  90. Vanbergen AJ, The Insect Pollinators Initiative (2013) Threats to an ecosystem service: pressures on pollinators. Frontiers in Ecology and the Environment 11:251–259CrossRefGoogle Scholar
  91. vanEngelsdorp D, Meixner MD (2010) A historical review of managed honey bee populations in Europe and the United States and the factors that may affect them. J Invertebr Pathol 103:S80–S95CrossRefPubMedGoogle Scholar
  92. Viana BF et al (2012) How well do we understand landscape effects on pollinators and pollination services? J Pollinat Ecol 7:31–41Google Scholar
  93. Williamson-Natesan E (2005) Comparison of methods for detecting bottlenecks from microsatellite loci. Conserv Genet 6:551–562. doi:10.1007/s10592-005-9009-5 CrossRefGoogle Scholar
  94. Winfree R, Aguilar R, Vázquez DP, LeBuhn G, Aizen MA (2009) A meta-analysis of bees’ responses to anthropogenic disturbance. Ecology 90:2068–2076CrossRefPubMedGoogle Scholar
  95. Wratten SD, Gillespie M, Decourtye A, Mader E, Desneux N (2012) Pollinator habitat enhancement: benefits to other ecosystem services Agriculture. Ecosyst Environ 159:112–122CrossRefGoogle Scholar
  96. Zimmermann Y, Schorkopf DLP, Moritz RFA, Pemberton RW, Quezada-Euan JJG, Eltz T (2011) Population genetic structure of orchid bees (Euglossini) in anthropogenically altered landscapes. Conserv Genet 12:1183–1194. doi:10.1007/s10592-011-0221-1 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Rodolfo Jaffé
    • 1
    • 2
  • Antonio Castilla
    • 3
  • Nathaniel Pope
    • 3
  • Vera Lucia Imperatriz-Fonseca
    • 1
    • 2
  • Jean Paul Metzger
    • 1
  • Maria Cristina Arias
    • 4
  • Shalene Jha
    • 3
  1. 1.Department of EcologyUniversity of São PauloSão PauloBrazil
  2. 2.Vale Institute of Technology - Sustainable DevelopmentBelémBrazil
  3. 3.Department of Integrative Biology, 401 Biological LaboratoriesUniversity of TexasAustinUSA
  4. 4.Depart of Genetics and Evolutionary BiologyUniversity of São PauloSão PauloBrazil

Personalised recommendations