Conservation Genetics

, Volume 16, Issue 6, pp 1319–1333 | Cite as

Distinctive insular forms of threespine stickleback (Gasterosteus aculeatus) from western Mediterranean islands

  • Kay Lucek
  • Ole Seehausen
Research Article


Neutral and adaptive variation among populations within a species is a major component of biological diversity and may be pronounced among insular populations due to geographical isolation and island specific evolutionary forces at work. Detecting and preserving potential evolutionary significant units below the species rank has become a crucial task for conservation biology. Combining genetic, phenotypic and ecological data, we investigated evolutionary patterns among the enigmatic threespine stickleback populations from western Mediterranean islands, all of which are threatened by habitat deterioration and climate change. We find indications that these populations derive from different genetic lineages, being genetically highly distinct from the stickleback of mainland Europe and the northern Atlantic as well as from each other. Mediterranean island stickleback populations are also phenotypically distinct from mainland populations but interestingly stickleback from Iceland have converged on a similar phenotype. This distinctive island stickleback phenotype seems to be driven by distinct selective regimes on islands versus continents. Overall, our results reveal the status of western Mediterranean island stickleback as evolutionarily distinct units, important for conservation of biodiversity.


Island rule Gasterosteus aculeatus Glacial refugium Mediterranean biota 



This work was partially supported by EAWAG action field project AquaDiverse to OS. KL was further supported by a Swiss National Science Foundation Early Postdoc. Mobility grant P2BEP3_152103. We thank Miguel Hermida, Rafał Bernaś, Flavio Orrù and David Marques for providing specimens and Helmut Wellendorf from the Museum of Natural History in Vienna for his assistance in obtaining phenotypic data for Sardinian specimens. Mélissa Lemoine, Joana Meier, Víctor Soria-Carrasco and two anonymous reviewers provided valuable comments on an earlier version of the manuscript.

Supplementary material

10592_2015_742_MOESM1_ESM.pdf (44 kb)
Fig. S1 Summary statistics for the individual based assignments using Structure: a) estimated likelihood for each run ± 1 SD; b) estimation of Delta K following Evanno et al. (2005). Supplementary material 1 (PDF 44 kb)
10592_2015_742_MOESM2_ESM.docx (22 kb)
Supplementary material 2 (DOCX 22 kb)


  1. Aldenhoven JT, Miller MA, Corneli PS, Shapiro MD (2010) Phylogeography of ninespine sticklebacks (Pungitius pungitius) in North America: glacial refugia and the origins of adaptive traits. Mol Ecol 19:4061–4076. doi: 10.1111/j.1365-294X.2010.04801.x CrossRefPubMedGoogle Scholar
  2. Araguas RM, Vidal O, Pla C, Sanz N (2012) High genetic diversity of the endangered Iberian three-spined stickleback (Gasterosteus aculeatus) at the Mediterranean edge of its range. Freshw Biol 57:143–154. doi: 10.1111/j.1365-2427.2011.02705.x CrossRefGoogle Scholar
  3. Bell MA (1981) Lateral plate polymorphism and ontogeny of the complete plate morph of threespine sticklebacks (Gasterosteus aculeatus). Evolution 35:67–74CrossRefGoogle Scholar
  4. Bell MA, Foster SA (1994) The evolutionary biology of the threespine stickleback. Oxford University Press, OxfordGoogle Scholar
  5. Berner D, Adams DC, Grandchamp A-C, Hendry AP (2008) Natural selection drives patterns of lake-stream divergence in stickleback foraging morphology. J Evol Biol 21:1653–1665. doi: 10.1111/j.1420-9101.2008.01583.x CrossRefPubMedGoogle Scholar
  6. Bertin L (1925) Recherches bionomiques, biométriques et sysématiques sur les épinoches (Gastérostéidés). Ann Inst Océanogr Monaco 2:1–204Google Scholar
  7. Bianco PG (1980) Areale Italico, rinvenimento in Calabria e origini delle popolationi metiterranee di Gasterosteus aculeatus L. Boll Mus Vic St Nat Verona 7:197–216Google Scholar
  8. Bouckaert R, Heled J, Kühnert D et al (2014) BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Comput Biol 10:e1003537. doi: 10.1371/journal.pcbi.1003537 PubMedCentralCrossRefPubMedGoogle Scholar
  9. Cano JM, Mäkinen HS, Leinonen T et al (2008) Extreme neutral genetic and morphological divergence supports classification of Adriatic three-spined stickleback (Gasterosteus aculeatus) populations as distinct conservation units. Biol Conserv 141:1055–1066. doi: 10.1016/j.biocon.2008.01.015 CrossRefGoogle Scholar
  10. Case TJ (1978) A general explanation for insular body size trends in terrestrial vertebrates. Ecology 59:1–18. doi: 10.2307/1936628 CrossRefGoogle Scholar
  11. Clavero M, Pou-Rovira Q, Zamora L (2009) Biology and habitat use of three-spined stickleback (Gasterosteus aculeatus) in intermittent Mediterranean streams. Ecol Freshw Fish 18:550–559CrossRefGoogle Scholar
  12. Colosimo PF, Hosemann KE, Balabhadra S et al (2005) Widespread parallel evolution in sticklebacks by repeated fixation of Ectodysplasin alleles. Science 307:1928–1933. doi: 10.1126/science.1107239 CrossRefPubMedGoogle Scholar
  13. Courchamp F, Hoffmann BD, Russell JC et al (2014) Climate change, sea-level rise, and conservation: keeping island biodiversity afloat. Trends Ecol Evol 29:127–130. doi: 10.1016/j.tree.2014.01.001 CrossRefPubMedGoogle Scholar
  14. Crivelli AJ, Britton RH (1987) Life history adaptations of Gasterosteus aculeatus in a Mediterranean wetland. Environ Biol Fish 18:109–125CrossRefGoogle Scholar
  15. Cuttelod A, Garcia N, Malak DA et al (2008) The Mediterranean: a biodiversity hotspot under threat. The 2008 Review of The IUCN Red List of Threatened Species. IUCN, Gland, p 1–16Google Scholar
  16. Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9:772. doi: 10.1038/nmeth.2109 PubMedCentralCrossRefPubMedGoogle Scholar
  17. DeFaveri J, Zanella LN, Zanella D et al (2012) Phylogeography of isolated freshwater three-spined stickleback Gasterosteus aculeatus populations in the Adriatic Sea basin. J Fish Biol 80:61–85. doi: 10.1111/j.1095-8649.2011.03147.x CrossRefPubMedGoogle Scholar
  18. Elton CS (1958) The ecology of invasions by animals and plants. University Of Chicago Press, ChicagoCrossRefGoogle Scholar
  19. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620. doi: 10.1111/j.1365-294X.2005.02553.x CrossRefPubMedGoogle Scholar
  20. Falush D, Stephens M, Pritchard J (2007) Inference of population structure using multilocus genotype data: dominant markers and null alleles. Mol Ecol Notes 7:574–578. doi: 10.1111/j.1471-8286.2007.01758.x PubMedCentralCrossRefPubMedGoogle Scholar
  21. Felsenstein J (2012) PHYLIP (Phylogeny Inference Package) version 3.69. Distributed by the author. Department of Genome Sciences. University of Washington, Seattle, WA.Google Scholar
  22. Foster JB (1964) Evolution of mammals on islands. Nature 202:234–235CrossRefGoogle Scholar
  23. Frommen JG, Herder F, Engqvist L et al (2011) Costly plastic morphological responses to predator specific odour cues in three-spined sticklebacks (Gasterosteus aculeatus). Evol Ecol 25:641–656. doi: 10.1007/s10682-010-9454-6 CrossRefGoogle Scholar
  24. Gasith A, Resh VH (1999) Streams in mediterranean climate regions: abiotic influences and biotic responses to predictable seasonal events. Annu Rev Ecol Evol Syst 30:51–81. doi: 10.2307/221679 CrossRefGoogle Scholar
  25. Gauthier A, Rose B (1974) Presence de l’épinoche en Corse. Bull Sco Sci Hist Nat Corse 44:41–48Google Scholar
  26. Geiger MF, Herder F, Monaghan MT et al (2014) Spatial heterogeneity in the Mediterranean Biodiversity Hotspot affects barcoding accuracy of its freshwater fishes. Mol Ecol Resour 14:1210–1221. doi: 10.1111/1755-0998.12257 CrossRefPubMedGoogle Scholar
  27. Gross HP (1977) Adaptive trends of environmentally sensitive traits in the three-spined stickleback, Gasterosteus aculeatus L. Z Zool Syst Evol 15:252–278CrossRefGoogle Scholar
  28. Gross HP (1978) Natural selection by predators on defensive apparatus of the three-spined stickleback, Gasterosteus aculeatus L. Can J Zool 56:398–413CrossRefGoogle Scholar
  29. Hedrick PW (2005) A standardized genetic differentiation measure. Evolution 59:1633–1638CrossRefPubMedGoogle Scholar
  30. Hewitt G (2000) The genetic legacy of the Quaternary ice ages. Nature 405:907–913. doi: 10.1038/35016000 CrossRefPubMedGoogle Scholar
  31. Jones FC, Chan YF, Schmutz J et al (2012) A genome-wide SNP genotyping array reveals patterns of global and repeated species-pair divergence in sticklebacks. Curr Biol 22:83–90. doi: 10.1016/j.cub.2011.11.045 PubMedCentralCrossRefPubMedGoogle Scholar
  32. Keenan K, McGinnity P, Cross TF et al (2013) diveRsity: an R package for the estimation and exploration of population genetics parameters and their associated errors. Methods Ecol Evol 4:782–788. doi: 10.1111/2041-210X.12067 CrossRefGoogle Scholar
  33. Kottelat M, Freyhof J (2007) Handbook of European freshwater fishes. Kottelat, Cornol and Freyhof, BerlinGoogle Scholar
  34. Kristjánsson BK, Skulason S, Noakes D (2002) Morphological segregation of Icelandic threespine stickleback (Gasterosteus aculeatus L). Biol J Linn Soc 76:247–257CrossRefGoogle Scholar
  35. Krupp F, Coad BW (1985) Notes on a population of the threespine stickleback, Gasterosteus aculeatus, from Syria (Pisces: Osteichthyes: Gasterosteidae). Senckenberg Biol 66:35–39Google Scholar
  36. Lande R (1998) Anthropogenic, ecological and genetic factors in extinction and conservation. Res Popul Ecol 40:259–269CrossRefGoogle Scholar
  37. Lobón-Cerviá J, Penczak T, de Sostoa A (1988) Morphological variability and distribution of stickleback (Gasterosteus aculeatus L.) in Spain. Cybium 12:219–227Google Scholar
  38. Lockwood JL, Hoopes MF, Marchetti MP (2007) Invasion ecology. Blackwell, MaldenGoogle Scholar
  39. Lomolino MV (1985) Body size of mammals on islands: the island rule reexamined. Am Nat 125:310–316. doi: 10.2307/2461638 CrossRefGoogle Scholar
  40. Lomolino MV (2005) Body size evolution in insular vertebrates: generality of the island rule. J Biogeogr 32:1683–1699. doi: 10.1111/j.1365-2699.2005.01314.x CrossRefGoogle Scholar
  41. Lomolino MV, Sax DF, Palombo MR (2012) Of mice and mammoths evaluations of causal explanations for body size evolution in insular mammals. J Biogeogr 40:1427–1439CrossRefGoogle Scholar
  42. Lucek K, Roy D, Bezault E et al (2010) Hybridization between distant lineages increases adaptive variation during a biological invasion: stickleback in Switzerland. Mol Ecol 19:3995–4011. doi: 10.1111/j.1365-294X.2010.04781.x CrossRefPubMedGoogle Scholar
  43. Lucek K, Sivasundar A, Seehausen O (2012) Evidence of adaptive evolutionary divergence during biological invasion. PLoS One 7:e49377. doi: 10.1371/journal.pone.0049377 PubMedCentralCrossRefPubMedGoogle Scholar
  44. Lucek K, Lemoine M, Seehausen O (2014a) Contemporary ecotypic divergence during a recent range expansion was facilitated by adaptive introgression. J Evol Biol 27:2233–2248. doi: 10.1111/jeb.12475 CrossRefPubMedGoogle Scholar
  45. Lucek K, Sivasundar A, Kristjánsson BK et al (2014b) Quick divergence but slow convergence during ecotype formation in lake and stream stickleback pairs of variable age. J Evol Biol 27:1878–1892. doi: 10.1111/jeb.12439 CrossRefPubMedGoogle Scholar
  46. MacColl ADC, El Nagar A, de Roij J (2013) The evolutionary ecology of dwarfism in three-spined sticklebacks. J Anim Ecol 82:642–652. doi: 10.1111/1365-2656.12028 CrossRefPubMedGoogle Scholar
  47. Mäkinen HS, Merilä J (2008) Mitochondrial DNA phylogeography of the three-spined stickleback (Gasterosteus aculeatus) in Europe-Evidence for multiple glacial refugia. Mol Phylogenet Evol 46:167–182. doi: 10.1016/j.ympev.2007.06.011 CrossRefPubMedGoogle Scholar
  48. Mäkinen HS, Cano JM, Merilä J (2006) Genetic relationships among marine and freshwater populations of the European three-spined stickleback (Gasterosteus aculeatus) revealed by microsatellites. Mol Ecol 15:1519–1534. doi: 10.1111/j.1365-294X.2006.02871.x CrossRefPubMedGoogle Scholar
  49. McGuigan K, Nishimura N, Currey M et al (2011) Cryptic genetic variation and body size evolution in threespine stickleback. Evolution 65:1203–1211. doi: 10.1111/j.1558-5646.2010.01195.x CrossRefPubMedGoogle Scholar
  50. McKinnon JS, Rundle H (2002) Speciation in nature: the threespine stickleback model systems. Trends Ecol Evol 17:480–488CrossRefGoogle Scholar
  51. Meirmans PG, Hedrick PW (2011) Assessing population structure: FST and related measures. Mol Ecol Resour 11:5–18CrossRefPubMedGoogle Scholar
  52. Meirmans PG, Van Tienderen P (2004) GENOTYPE and GENODIVE: two programs for the analysis of genetic diversity of asexual organisms. Mol Ecol Notes 4:792–794CrossRefGoogle Scholar
  53. Mori S (1987) Divergence in reproductive ecology of the three-spined stickleback, Gasterosteus aculeatus. Jpn J Ichthyol 34:165–175Google Scholar
  54. Mori S, Takamura N (2004) Changes in morphological characteristics of an introduced population of the threespine stickleback Gasterosteus aculeatus in Lake Towada, northern Japan. Ichthyol Res 51:295–300. doi: 10.1007/s10228-004-0232-8 CrossRefGoogle Scholar
  55. Moritz C (1994) Defining “Evolutionarily significant units” for conservation. Trends Ecol Evol 9:373–375. doi: 10.1016/0169-5347(94)90057-4 CrossRefPubMedGoogle Scholar
  56. Münzing J (1963) The evolution of variation and distributional patterns in European populations of the three-spined stickleback, Gasterosteus aculeatus. Evolution 17:320–332CrossRefGoogle Scholar
  57. Nagel L, Schluter D (1998) Body size, natural selection, and speciation in sticklebacks. Evolution 52:209–218CrossRefGoogle Scholar
  58. NatureServe (2015) Gasterosteus aculeatus. The IUCN Red List of Threatened Species. Version 2015.1. Accessed 29 April 2015
  59. Olden JD, Leroy Poff N, Douglas MR et al (2004) Ecological and evolutionary consequences of biotic homogenization. Trends Ecol Evol 19:18–24. doi: 10.1016/j.tree.2003.09.010 CrossRefPubMedGoogle Scholar
  60. Orru F, Deiana AM, Cau A (2010) Introduction and distribution of alien freshwater fishes on the island of Sardinia (Italy): an assessment on the basis of existing data sources. J Appl Ichthyol 26:46–52. doi: 10.1111/j.1439-0426.2010.01501.x CrossRefGoogle Scholar
  61. Orti G, Bell MA, Reimchen TE, Meyer A (1994) Global survey of mitochondrial DNA sequences in the threespine stickleback: evidence for recent migrations. Evolution 48:608–622CrossRefGoogle Scholar
  62. Palmer TN, Räisänen J (2002) Quantifying the risk of extreme seasonal precipitation events in a changing climate. Nature 415:512–514. doi: 10.1038/415512a CrossRefPubMedGoogle Scholar
  63. Pereira HM, Leadley PW, Proença V et al (2010) Scenarios for global biodiversity in the 21st century. Science 330:1496–1501. doi: 10.1126/science.1196624 CrossRefPubMedGoogle Scholar
  64. R Development Core Team (2012) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
  65. Rambaut A, Suchard MA, Xie D, Drummond AJ (2014) Tracer v1.6. Available from
  66. Reimchen TE (1994) Predators and morphological evolution in threespine stickleback. In: Bell M, Foster S (eds) The evolutionary biology of the threespine stickleback, 1st edn. Oxford University Press, Oxford, pp 240–276Google Scholar
  67. Rezansoff AM, Crispo E, Blair C et al (2015) Toward the genetic origins of a potentially non-native population of threespine stickleback (Gasterosteus aculeatus) in Alberta. Conserv Genet. doi: 10.5061/dryad.pc1th Google Scholar
  68. Richmond JQ, Jacobs DK, Backlin AR et al (2014) Ephemeral stream reaches preserve the evolutionary and distributional history of threespine stickleback in the Santa Clara and Ventura River watersheds of southern California. Conserv Genet. doi: 10.1007/s10592-014-0643-7 Google Scholar
  69. Ricketts TH, Dinerstein E, Boucher T et al (2005) Pinpointing and preventing imminent extinctions. Proc Natl Acad Sci USA 102:18497–18501. doi: 10.1073/pnas.0509060102 PubMedCentralCrossRefPubMedGoogle Scholar
  70. Riera F (1980) Breves notas y primera cita del Espinoso (Gasterosteus aculeatus L.) en S’Albufera, Mallorca. Boll Soc Hist Nat Balears 24:109–111Google Scholar
  71. Ryder OA (1986) Species conservation and systematics—the dilemma of subspecies. Trends Ecol Evol 1:9–10CrossRefGoogle Scholar
  72. Schluter D, Conte GL (2009) Genetics and ecological speciation. Proc Natl Acad Sci USA 106(Suppl 1):9955–9962. doi: 10.1073/pnas.0901264106 PubMedCentralCrossRefPubMedGoogle Scholar
  73. Seehausen O, vanAlphen J, Witte F (1997) Cichlid fish diversity threatened by eutrophication that curbs sexual selection. Science 277:1808–1811CrossRefGoogle Scholar
  74. Spence R, Wootton RJ, Barber I et al (2013) Ecological causes of morphological evolution in the three-spined stickleback. Ecol Evol 3:1717–1726. doi: 10.1002/ece3.581 PubMedCentralCrossRefPubMedGoogle Scholar
  75. Tamura K, Peterson D, Peterson N et al (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739. doi: 10.1093/molbev/msr121 PubMedCentralCrossRefPubMedGoogle Scholar
  76. Taylor EB, Boughman JW, Groenenboom M et al (2006) Speciation in reverse: morphological and genetic evidence of the collapse of a three-spined stickleback (Gasterosteus aculeatus) species pair. Mol Ecol 15:343–355. doi: 10.1111/j.1365-294X.2005.02794.x CrossRefPubMedGoogle Scholar
  77. Vonlanthen P, Bittner D, Hudson AG et al (2012) Eutrophication causes speciation reversal in whitefish adaptive radiations. Nature 482:357–362. doi: 10.1038/nature10824 CrossRefPubMedGoogle Scholar
  78. Watanabe K, Mori S, Nishida M (2003) Genetic relationships and origin of two geographic groups of the freshwater threespine stickleback, “hariyo”. Zool Sci 20:265–274. doi: 10.2108/zsj.20.265 CrossRefPubMedGoogle Scholar
  79. Whittaker RJ, Fernández-Palacios JM (2007) Island biogeography: ecology, evolution and conservation. Oxford University Press, OxfordGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Aquatic Ecology and Evolution, Institute of Ecology & EvolutionUniversity of BernBernSwitzerland
  2. 2.Department of Fish Ecology and Evolution, Center for Ecology, Evolution and BiogeochemistryEAWAG Swiss Federal Institute of Aquatic Science and TechnologyKastanienbaumSwitzerland
  3. 3.Department of Animal and Plant SciencesUniversity of SheffieldSheffieldUK

Personalised recommendations