Conservation Genetics

, Volume 16, Issue 3, pp 595–611 | Cite as

Toll-like receptor diversity in 10 threatened bird species: relationship with microsatellite heterozygosity

  • Catherine E. GrueberEmail author
  • Gabrielle J. Knafler
  • Tania M. King
  • Alistair M. Senior
  • Stefanie Grosser
  • Bruce Robertson
  • Kerry A. Weston
  • Patricia Brekke
  • Christian L. W. Harris
  • Ian G. Jamieson
Research Article


Measuring individual-level heterozygosity in threatened species is one approach to understanding and mitigating losses of genetic diversity and the role of inbreeding depression in those populations. In many conservation contexts, this goal is approached by assaying levels of microsatellite diversity, and inference is often extended to functional genomic regions. Our study quantifies diversity of innate immunity toll-like receptor (TLR) genes in 10 threatened New Zealand birds across four avian orders, with an average of 20.1 individuals and 6.2 TLR loci (sequences averaging 850 bp in length) per species. We provide detailed TLR diversity statistics for these 10 species, which showed more evidence for genetic drift than balancing selection at TLR loci, with two possible exceptions (TLR1LA for hihi and TLR5 for kokako). Our observations also support a possible gene-duplication of TLR7 in rock wren, indicating that a TLR7 duplication previously observed in other passerines may have occurred early in the divergence of this order. In addition to these analyses of population-level TLR sequence diversity, we used an average of 14.6 polymorphic microsatellite loci per species to study, for the first time, the relationship between microsatellite internal relatedness (a measure of individual homozygosity) and TLR heterozygosity. There was no relationship between microsatellite and TLR heterozygosity of individuals within species, suggesting that the predictive power of microsatellites to evaluate functional diversity is poor, and highlighting the value of adding data from putatively functional genomic regions, such as TLRs, in the study of genetic diversity of threatened species. Overall this study provides valuable data for comparison with more widespread species, and facilitates research into the importance of TLR diversity in natural populations of conservation concern.


Apterygiformes Conservation Gruiformes Immunity genes Inbreeding Passeriformes Psittaciformes 



We are grateful to those who generously provided samples and support for this study: Hugh Robertson, Oliver Overdyck, Tertia Thurley (New Zealand Department of Conservation); Kevin Parker (Massey University), John Ewen (Zoological Society of London) and Bethany Jackson (Auckland Zoo). We also thank Fiona Robertson for laboratory assistance and Ken Miller for preparation of Fig. 1. We are grateful for the continuing support of the New Zealand Department of Conservation, and in particular those Species Recovery Groups included in this study. This research was supported by the Allan Wilson Centre for Molecular Ecology and Evolution, the Marsden Fund, Landcare Research, University of Otago, a Royal Society Grant to PB and grants from Brian Mason Scientific and Technical Trust, Mohua Charitable Trust and JS Watson Conservation Trust to KW. CEG is currently supported by San Diego Zoo Global.

Supplementary material

10592_2014_685_MOESM1_ESM.docx (254 kb)
Supplementary material 1 (DOCX 255 kb)


  1. Acevedo-Whitehouse K, Cunningham AA (2006) Is MHC enough for understanding wildlife immunogenetics? Trends Ecol Evol 21:433–438CrossRefPubMedGoogle Scholar
  2. Alcaide M, Edwards SV (2011) Molecular evolution of the toll-like receptor multigene family in birds. Mol Biol Evol 28:1703–1715CrossRefPubMedGoogle Scholar
  3. Alho JS, Lillandt BG, Jaari S, Merila J (2009) Multilocus heterozygosity and inbreeding in the Siberian jay. Conserv Genet 10:605–609. doi: 10.1007/s10592-008-9588-z CrossRefGoogle Scholar
  4. Alho JS, Välimäki K, Merilä J (2010) Rhh: an R extension for estimating multilocus heterozygosity and heterozygosity–heterozygosity correlation. Mol Ecol Resour 10:720–722. doi: 10.1111/j.1755-0998.2010.02830.x CrossRefPubMedGoogle Scholar
  5. Allendorf FW, Luikart G (2007) Conservation and the genetics of populations. Blackwell, OxfordGoogle Scholar
  6. Amos W, Worthington Wilmer J, Fullard K et al (2001) The influence of parental relatedness on reproductive success. Proc R Soc Lond Ser B 268:2021–2027CrossRefGoogle Scholar
  7. Areal H, Abrantes J, Esteves P (2011) Signatures of positive selection in Toll-like receptor (TLR) genes in mammals. BMC Evol Biol 11:368. doi: 10.1186/1471-2148-11-368 CrossRefPubMedCentralPubMedGoogle Scholar
  8. Babik W, Taberlet P, Ejsmond MJ, Radwan J (2009) New generation sequencers as a tool for genotyping of highly polymorphic multilocus MHC system. Mol Ecol Resour 9:713–719. doi: 10.1111/j.1755-0998.2009.02622.x CrossRefPubMedGoogle Scholar
  9. Bainová H, Králová T, Bryjová A et al (2014) First evidence of independent pseudogenization of Toll-like receptor 5 in passerine birds. Dev Comp Immunol 45:151–155CrossRefPubMedGoogle Scholar
  10. Balloux F, Amos W, Coulson T (2004) Does heterozygosity estimate inbreeding in real populations? Mol Ecol 13:3021–3031CrossRefPubMedGoogle Scholar
  11. Barreiro LB, Ben-Ali M, Quach H et al (2009) Evolutionary dynamics of human Toll-like receptors and their different contributions to host defense. PLoS Genet 5:e1000562. doi: 10.1371/journal.pgen.1000562 CrossRefPubMedCentralPubMedGoogle Scholar
  12. Basse B, Flux I, Innes J (2003) Recovery and maintenance of North Island kokako (Callaeas cinerea wilsoni) populations through pulsed pest control. Biol Conserv 109:259–270. doi: 10.1016/S0006-3207(02)00154-4 CrossRefGoogle Scholar
  13. Bates D, Maechler M (2009) lme4: linear mixed-effects models using S4 classesGoogle Scholar
  14. BirdLife International (2013) Cyanoramphus novaezelandiae. IUCN 2013 IUCN Red List Threat. Species Version 20132. BirdLife International, CambridgeGoogle Scholar
  15. Boessenkool S, Taylor SS, Tepolt CK et al (2007) Large mainland populations of South Island robins retain greater genetic diversity than offshore island refuges. Conserv Genet 8:705–714CrossRefGoogle Scholar
  16. Bollmer JL, Dunn PO, Whittingham LA, Wimpee C (2010) Extensive MHC class II B gene duplication in a Passerine, the common yellowthroat (Geothlypis trichas). J Hered 101:448–460. doi: 10.1093/jhered/esq018 CrossRefPubMedGoogle Scholar
  17. Bollmer JL, Ruder EA, Johnson JA et al (2011) Drift and selection influence geographic variation at immune loci of prairie-chickens. Mol Ecol 20:4695–4706. doi: 10.1111/j.1365-294X.2011.05319.x CrossRefPubMedGoogle Scholar
  18. Brekke P, Bennett PM, Santure AW, Ewen JG (2011) High genetic diversity in the remnant island population of hihi and the genetic consequences of re-introduction. Mol Ecol 20:29–45. doi: 10.1111/j.1365-294X.2010.04923.x CrossRefPubMedGoogle Scholar
  19. Casquet J, Thebaud C, Gillespie RG (2012) Chelex without boiling, a rapid and easy technique to obtain stable amplifiable DNA from small amounts of ethanol-stored spiders. Mol Ecol Resour 12:136–141. doi: 10.1111/j.1755-0998.2011.03073.x CrossRefPubMedGoogle Scholar
  20. Chapman JR, Nakagawa S, Coltman DW et al (2009) A quantitative review of heterozygosity–fitness correlations in animal populations. Mol Ecol 18:2746–2765. doi: 10.1111/j.1365-294X.2009.04247.x CrossRefPubMedGoogle Scholar
  21. Clout MN (2006) A celebration of kakapo: progress in the conservation of an enigmatic parrot. Notornis 53:1–2Google Scholar
  22. Coltman DW, Pilkington JG, Smith JA, Pemberton J (1999) Parasite-mediated selection against inbred Soay sheep in a free-living island population. Evolution 53:1259–1267CrossRefGoogle Scholar
  23. Cormican P, Lloyd AT, Downing T et al (2009) The avian toll-like receptor pathway—subtle differences amidst general conformity. Dev Comp Immunol 33:967–973. doi: 10.1016/j.dci.2009.04.001 CrossRefPubMedGoogle Scholar
  24. Dawe MR (1979) Behaviour and ecology of the red-crowned kakariki (Cyanoramphus novaezelandiae) in relation to management. Department of Zoology, University of Auckland, AucklandGoogle Scholar
  25. Deakin JE (2012) Marsupial genome sequences: providing insight into evolution and disease. Scientifica. doi: 10.6064/2012/543176 PubMedCentralPubMedGoogle Scholar
  26. Duncan RP, Blackburn TM (2004) Extinction and endemism in the New Zealand avifauna. Glob Ecol Biogeogr 13:509–517CrossRefGoogle Scholar
  27. Ericson PGP, Christidis L, Cooper A et al (2002) A Gondwanan origin of passerine birds supported by DNA sequences of the endemic New Zealand wrens. Proc R Soc Lond B 269:235–241. doi: 10.1098/rspb.2001.1877 CrossRefGoogle Scholar
  28. Ewens WJ (1972) The sampling theory of selectively neutral alleles. Theor Popul Biol 3:87–112CrossRefPubMedGoogle Scholar
  29. Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567CrossRefPubMedGoogle Scholar
  30. Galan M, Guivier E, Caraux G et al (2010) A 454 multiplex sequencing method for rapid and reliable genotyping of highly polymorphic genes in large-scale studies. BMC Genom 11:296CrossRefGoogle Scholar
  31. Garrigan D, Hedrick PW (2003) Perspective: detecting adaptive molecular polymorphism: lessons from the MHC. Evolution 57:1707–1722. doi: 10.1111/j.0014-3820.2003.tb00580.x CrossRefPubMedGoogle Scholar
  32. Gaze PD (1985) Distribution of yellowheads (Mohoua ochrocephala). Notornis 32:261–269Google Scholar
  33. Gelman A, Su Y-S, Yajima M, et al (2009) arm: data analysis using regression and multilevel/hierarchical models. R-package. Available at
  34. Grueber CE, Jamieson IG (2011) Low genetic diversity and small population size of Takahe Porphyrio hochstetteri upon European arrival in New Zealand. Ibis 153:384–394CrossRefGoogle Scholar
  35. Grueber CE, Jamieson IG (2013) Primers for amplification of innate immunity Toll-like receptors in threatened birds of the Apterygiformes, Gruiformes, Psittaciformes and Passeriformes. Conserv Genet Resour 5:1043–1047. doi: 10.1007/s12686-013-9965-x CrossRefGoogle Scholar
  36. Grueber CE, King TM, Waters JM, Jamieson IG (2008a) Isolation and characterization of microsatellite loci from the endangered New Zealand takahe (Gruiformes; Rallidae; Porphyrio hochstetteri). Mol Ecol Resour 8:884–886. doi: 10.1111/j.1755-0998.2008.02098.x CrossRefPubMedGoogle Scholar
  37. Grueber CE, Wallis GP, Jamieson IG (2008b) Heterozygosity–fitness correlations and their relevance to studies on inbreeding depression in threatened species. Mol Ecol 17:3978–3984. doi: 10.1111/j.1365-294X.2008.03910.x CrossRefPubMedGoogle Scholar
  38. Grueber CE, Waters JM, Jamieson IG (2011) The imprecision of heterozygosity–fitness correlations hinders the detection of inbreeding and inbreeding depression in a threatened species. Mol Ecol 20:67–79CrossRefPubMedGoogle Scholar
  39. Grueber CE, Wallis GP, King T, Jamieson IG (2012) Variation at innate immunity Toll-like receptor genes in a bottlenecked population of a New Zealand robin. PLoS One 7:e45011. doi: 10.1371/journal.pone.0045011 CrossRefPubMedCentralPubMedGoogle Scholar
  40. Grueber CE, Wallis GP, Jamieson IG (2013) Genetic drift outweighs natural selection at toll-like receptor (TLR) immunity loci in a reintroduced population of a threatened species. Mol Ecol 22:4470–4482. doi: 10.1111/mec.12404 CrossRefPubMedGoogle Scholar
  41. Grueber CE, Wallis GP, Jamieson IG (2014) Episodic positive selection in the evolution of avian Toll-like receptor innate immunity genes. PLoS One. doi: 10.1371/journal.pone.0089632 PubMedCentralPubMedGoogle Scholar
  42. Hadfield JD (2010) MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R package. J Stat Softw 33:1–22Google Scholar
  43. Hartmann SA, Schaefer HM, Segelbacher G (2014) Genetic depletion at adaptive but not neutral loci in an endangered bird species. Mol Ecol. doi: 10.1111/mec.12975 PubMedGoogle Scholar
  44. Hedrick PW (1998) Balancing selection and MHC. Genetica 104:207–214CrossRefPubMedGoogle Scholar
  45. Hedrick PW (2012) What is the evidence for heterozygote advantage selection? Trends Ecol Evol 27:698–704. doi: 10.1016/j.tree.2012.08.012 CrossRefPubMedGoogle Scholar
  46. Higgins PJ (1999) Handbook of Australian, New Zealand and Antarctic birds. Oxford University Press, MelbourneGoogle Scholar
  47. Higgins PJ, Peter JM (2002) Handbook of Australian, New Zealand and Antarctic birds. Volume 6: Pardalotes to shrike-thrushes. Oxford University Press, MelbourneGoogle Scholar
  48. Higham T, Anderson A, Jacomb C (1999) Dating the first New Zealanders: the chronology of Wairau Bar. Antiquity 73:420–427Google Scholar
  49. Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Stat 6:65–70Google Scholar
  50. Holzapfel S, Robertson HA, McLennan JA et al (2009) Kiwi (Apteryx spp.) recovery plan, 2008–2018. Department of Conservation, WellingtonGoogle Scholar
  51. Hoosen S, Jamieson IG (2003) The distribution and current status of New Zealand saddleback Philesturnus carunculatus. Bird Conserv Int 13:79–95CrossRefGoogle Scholar
  52. Hudson QJ, Wilkins JR, Waas JR, Hogg ID (2000) Low genetic variability in small populations of New Zealand kokako Callaeas cinera wilsoni. Biol Conserv 96:105–112CrossRefGoogle Scholar
  53. Innes J, Hay R, Flux I et al (1999) Successful recovery of North Island kokako Callaeas cinerea wilsoni populations, by adaptive management. Biol Conserv 87:201–214. doi: 10.1016/S0006-3207(98)00053-6 CrossRefGoogle Scholar
  54. Jamieson IG, Tracy LN, Fletcher D, Armstrong DP (2007) Moderate inbreeding depression in a reintroduced population of North Island robins. Anim Conserv 10:95–102. doi: 10.1111/j.1469-1795.2006.00078.x CrossRefGoogle Scholar
  55. Jepson A, Banya W, Sisay-Joof F et al (1997) Quantification of the relative contribution of major histocompatibility complex (MHC) and non-MHC genes to human immune responses to foreign antigens. Infect Immun 65:872–876PubMedCentralPubMedGoogle Scholar
  56. Keestra AM, de Zoete MR, Bouwman LI et al (2013) Unique features of chicken Toll-like receptors. Dev Comp Immunol 41:316–323. doi: 10.1016/j.dci.2013.04.009 CrossRefPubMedGoogle Scholar
  57. Keller LF, Waller DM (2002) Inbreeding effects in wild populations. Trends Ecol Evol 17:230–241. doi: 10.1016/S0169-5347(02)02489-8 CrossRefGoogle Scholar
  58. Kirk H, Freeland JR (2011) Applications and implications of neutral versus non-neutral markers in molecular ecology. Int J Mol Sci 12:3966–3988CrossRefPubMedCentralPubMedGoogle Scholar
  59. Lee WG, Jamieson IG (2001) The takahe: fifty years of conservation management and research. University of Otago Press, DunedinGoogle Scholar
  60. Lettink M, Jamieson IG, Millar CD, Lambert DM (2002) Mating system and genetic variation in the endangered New Zealand takahe. Conserv Genet 3:427–434CrossRefGoogle Scholar
  61. Levene H (1949) On a matching problem arising in genetics. Ann Math Stat 20:91–94. doi: 10.1214/aoms/1177730093 CrossRefGoogle Scholar
  62. Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452. doi: 10.1093/bioinformatics/btp187 CrossRefPubMedGoogle Scholar
  63. Ljungqvist M, Akesson M, Hansson B et al (2010) Do microsatellites reflect genome-wide genetic diversity in natural populations? A comment on Väli et al. (2008). Mol Ecol 19:851–855CrossRefPubMedGoogle Scholar
  64. Meglécz E, Piry S, Desmarais E et al (2011) SESAME (SEquence Sorter & AMplicon Explorer): genotyping based on high-throughput multiplex amplicon sequencing. Bioinformatics 27:277–278. doi: 10.1093/bioinformatics/btq641 CrossRefPubMedCentralPubMedGoogle Scholar
  65. Merton DV (1975) The saddleback: its status and conservation. In: Martin RD (ed) Breeding endangered species in captivity. Academic Press, London, pp 61–74Google Scholar
  66. Michelsen-Heath S, Gaze P (2007) Changes in abundance and distribution of the rock wren (Xenicus gilviventris) in the South Island, New Zealand. Notornis 54:71–78Google Scholar
  67. Miller HC, Lambert DM (2004) Genetic drift outweighs balancing selection in shaping post-bottleneck major histocompatibility complex variation in New Zealand robins (Petroicidae). Mol Ecol 13:3709–3721CrossRefPubMedGoogle Scholar
  68. Miller JM, Malenfant RM, David P et al (2014) Estimating genome-wide heterozygosity: effects of demographic history and marker type. Heredity 112:240–247. doi: 10.1038/hdy.2013.99 CrossRefPubMedCentralPubMedGoogle Scholar
  69. Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New YorkGoogle Scholar
  70. O’Donnell CFJ, Roberts A, Lyall J (2002) Mohua (yellowhead) recovery plan 2002–2012. Department of Conservation, WellingtonGoogle Scholar
  71. Piertney SB, Oliver MK (2006) The evolutionary ecology of the major histocompatibility complex. Heredity 96:7–21. doi: 10.1038/sj.hdy.6800724 PubMedGoogle Scholar
  72. Powlesland RG, Merton DV, Cockrem JF (2006) A parrot apart: the natural history of the kakapo (Strigops habroptilus), and the context of its conservation management. Notornis 53:3–26Google Scholar
  73. R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  74. Robertson BC, Minot EO, Lambert DM (2000) Microsatellite primers for the kakapo (Strigops habroptilus) and their utility in other parrots. Conserv Genet 1:93–95CrossRefGoogle Scholar
  75. Seutin G, White BN, Boag PT (1991) Preservation of avian blood and tissue samples for DNA analyses. Can J Zool 69:82–90CrossRefGoogle Scholar
  76. Slate J, David P, Dodds KG et al (2004) Understanding the relationship between the inbreeding coefficient and multilocus heterozygosity: theoretical expectations and empirical data. Heredity 93:255–265CrossRefPubMedGoogle Scholar
  77. Spurgin LG, Richardson DS (2010) How pathogens drive genetic diversity: MHC, mechanisms and misunderstandings. Proc R Soc B Biol Sci 277:979–988CrossRefGoogle Scholar
  78. Szulkin M, Bierne N, David P (2010) Heterozygosity–fitness correlations: a time for reappraisal. Evolution 64:1202–1217PubMedGoogle Scholar
  79. Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595PubMedCentralPubMedGoogle Scholar
  80. Taylor SS, Jamieson IG (2008a) No evidence for loss of genetic variation following sequential translocations in extant populations of a genetically depauperate species. Mol Ecol 17:545–556. doi: 10.1111/j.1365-294X.2007.03591.x PubMedGoogle Scholar
  81. Taylor SS, Jamieson IG (2008b) No evidence for loss of genetic variation following sequential translocations in extant populations of a genetically depauperate species. Mol Ecol 17:545–556. doi: 10.1111/j.1365-294X.2007.03591.x PubMedGoogle Scholar
  82. Taylor C, Castro IC, Griffiths R (2005) Hihi/stitchbird (Notiomystis cincta) recovery plan, 2004–2009. Department of Conservation, WellingtonGoogle Scholar
  83. Taylor SS, Jamieson IG, Wallis GP (2007) Historic and contemporary levels of genetic variation in two New Zealand passerines with different histories of decline. J Evol Biol 20:2035–2047CrossRefPubMedGoogle Scholar
  84. Temperley N, Berlin S, Paton I et al (2008) Evolution of the chicken Toll-like receptor gene family: a story of gene gain and gene loss. BMC Genomics 9:62CrossRefPubMedCentralPubMedGoogle Scholar
  85. Tracy L, Jamieson I (2011) Historic DNA reveals contemporary population structure results from anthropogenic effects, not pre-fragmentation patterns. Conserv Genet 12:517–526. doi: 10.1007/s10592-010-0158-9 CrossRefGoogle Scholar
  86. Turner AK, Begon M, Jackson JA et al (2011) Genetic diversity in cytokines associated with immune variation and resistance to multiple pathogens in a natural rodent population. PLoS Genet 7:e1002343CrossRefPubMedCentralPubMedGoogle Scholar
  87. Uematsu S, Akira S (2008) Toll-like receptors (TLRs) and their ligands. Handb Exp Pharmacol 183:1–20. doi: 10.1007/978-3-540-72167-3_1 CrossRefPubMedGoogle Scholar
  88. Väli U, Einarsson A, Waits L, Ellegren H (2008) To what extent do microsatellite markers reflect genome-wide genetic diversity in natural populations? Mol Ecol 17:3808–3817. doi: 10.1111/j.1365-294X.2008.03876.x CrossRefPubMedGoogle Scholar
  89. Veitch CR (2002) Eradication of Pacific rats (Rattus exulans) from Tiritiri Matangi Island, Hauraki Gulf, New Zealand. In: Veitch CR, Clout MN (eds) Turning the tide: the eradication of invasive species. IUCN, Gland, pp 360–364Google Scholar
  90. Vinkler M, Albrecht T (2009) The question waiting to be asked: innate immunity receptors in the perspective of zoological research. Folia Zool 58:15–28Google Scholar
  91. Walsh PS, Metzger DA, Higuchi R (1991) Chelex-100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. Biotechniques 10:506–513PubMedGoogle Scholar
  92. Watterson GA (1978) An analysis of multi-allelic data. Genetics 88:171–179PubMedCentralPubMedGoogle Scholar
  93. Werling D, Jann OC, Offord V et al (2009) Variation matters: TLR structure and species-specific pathogen recognition. Trends Immunol 30:124–130. doi: 10.1016/ CrossRefPubMedGoogle Scholar
  94. Westerdahl H (2007) Passerine MHC: genetic variation and disease resistance in the wild. J Ornithol 148:469–477. doi: 10.1007/s10336-007-0230-5 CrossRefGoogle Scholar
  95. Weston KA (2014) Conservation genetics of rock wren (Xenicus gilviventris). PhD, Department of Zoology, University of OtagoGoogle Scholar
  96. Weston KA, Robertson BC (2014) Isolation and characterisation of 14 microsatellites for the New Zealand rock wren Xenicus gilviventris. Conserv Genet Resour. doi: 10.1007/s12686-013-0018-2 Google Scholar
  97. Wickes C, Crouchley D, Maxwell J (2009) Takahe recovery plan, 2007–2012. Department of Conservation, WellingtonGoogle Scholar
  98. Ziesemann B, Brunton DH, Castro IC (2011) Nesting success and breeding ecology in a high-density population of Brown Kiwi (Apteryx mantelli). Emu 111:148–154CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Catherine E. Grueber
    • 1
    • 5
    Email author
  • Gabrielle J. Knafler
    • 1
  • Tania M. King
    • 1
  • Alistair M. Senior
    • 2
  • Stefanie Grosser
    • 1
  • Bruce Robertson
    • 1
  • Kerry A. Weston
    • 1
  • Patricia Brekke
    • 3
  • Christian L. W. Harris
    • 4
  • Ian G. Jamieson
    • 1
  1. 1.Allan Wilson Centre for Molecular Ecology and Evolution, Department of ZoologyUniversity of OtagoDunedinNew Zealand
  2. 2.Charles Perkins Centre and School of Biological SciencesUniversity of SydneySydneyAustralia
  3. 3.Institute of ZoologyZoological Society of LondonLondonUK
  4. 4.Department of BiochemistryUniversity of OtagoDunedinNew Zealand
  5. 5.Faculty of Veterinary ScienceUniversity of SydneySydneyAustralia

Personalised recommendations