Conservation Genetics

, Volume 16, Issue 3, pp 549–558 | Cite as

Fragmentation genetics of the grassland butterfly Polyommatus coridon: Stable genetic diversity or extinction debt?

  • Jan Christian Habel
  • Sabrina V. BrückmannEmail author
  • Jochen Krauss
  • Julia Schwarzer
  • Alfons Weig
  • Martin Husemann
  • Ingolf Steffan-Dewenter
Research Article


Habitat fragmentation can have severe effects on the intraspecific variability of populations and thus plays a pivotal role in species conservation. Especially taxa with specific habitat demands and low dispersal behaviour suffer from habitat fragmentation. One such taxon, the Chalk-hill Blue butterfly, Polyommatus coridon, nowadays mostly occurs in small and isolated, calcareous grasslands across Central Europe. Here we investigate the population genetic structure of 15 local populations of this butterfly species over major parts of the Fränkische Schweiz (south-east Germany). Based on seven polymorphic microsatellites we estimate genetic diversity and differentiation. We use the data to test for potential effects of different habitat sizes, habitat connectivity, and population density. We found high genetic diversity but no significant genetic differentiation among the 15 local populations (F ST = 0.0087, P > 0.05). Genetic diversity was not correlated with habitat size, habitat connectivity, or census population size. But, we found a marginally positive correlation between increasing habitat connectivity and population density (r 2 = 0.31, P < 0.05). Compared to other butterfly species, our data resemble a generalist species with well connected populations rather than a specialist taxon existing in a highly fragmented landscape. The high genetic diversity and the lack of differentiation might either be the result of relatively large and stable local populations and ongoing gene flow, or is the genetic legacy of formerly large and interconnected populations during periods of extensive agriculture.


Census population size Genetic diversity Genetic differentiation Habitat fragmentation Habitat connectivity Habitat size 



This project was funded by the EU 6FP project COCONUT, Contract Number 2006-044346 to ISD and JK, and by the EU FP7 SCALES project, project #226852 to ISD and JK. We are grateful for valuable comments on this manuscript by Thomas Schmitt (Müncheberg, Germany) and Emily Martin (Würzburg, Germany). We thank Mike Teucher (Trier, Germany) for generating Fig. 1.

Supplementary material

10592_2014_679_MOESM1_ESM.docx (119 kb)
(DOC 120 kb)


  1. Anton C, Zeisset I, Musche M, Durka W, Boomsma JJ, Settele J (2007) Population structure of a large blue butterfly and its specialist parasitoid in a fragmented landscape. Mol Ecol 16:3828–3838CrossRefPubMedGoogle Scholar
  2. Asher J, Warren M, Fox R, Harding P, Jeffcoate G, Jeffcoate S (2001) The millenium atlas of butterflies in Britain and Ireland. Oxford University Press, OxfordGoogle Scholar
  3. Augenstein B, Ulrich W, Habel JC (2012) Directional temporal shifts in community structure of butterflies and ground beetles in fragmented oligotrophic grasslands of Central Europe. Basic Appl Ecol 13:715–724CrossRefGoogle Scholar
  4. Benton TG, Vickery JA, Wilson JD (2003) Farmland biodiversity: is habitat heterogeneity the key? Trends Ecol Evol 18:182–188CrossRefGoogle Scholar
  5. Bereczki J, Pecsenye K, Peregovits L, Varga Z (2005) Pattern of genetic differentiation in the Maculinea alcon species group (Lepidoptera, Lycaenidae) in Central Europe. J Zool Sys Evol Res 43:157–165CrossRefGoogle Scholar
  6. Bink FA (1992) Ecologische Atlas van de Dagvlinders van Noordwest-Europa. Schyut, HaarlemGoogle Scholar
  7. Böhmer HJ (1994) Die Halbtrockenrasen der Fränkischen Alb—Strukturen, Prozesse, Erhaltung. Mitteilungen der Fränkischen Geographischen Gesellschaft 41:323–343Google Scholar
  8. Brereton TM, Warren MS, Roy DB, Stewart K (2008) The changing status of the Chalk-hill Blue butterfly Polyommatus coridon in the UK: the impacts of conservation policies and environmental factors. J Insect Conserv 12:629–638CrossRefGoogle Scholar
  9. Brückmann SV, Krauss J, Steffan-Dewenter I (2010a) Butterfly and plant specialists suffer from reduced connectivity in fragmented landscapes. J Appl Ecol 47:799–809CrossRefGoogle Scholar
  10. Brückmann SV, Krauss J, von Achterberg C, Steffan-Dewenter I (2010b) The impact of habitat fragmentation on trophic interactions of the monophagous butterfly Polyommatus coridon. J Insect Conserv 15:707–714CrossRefGoogle Scholar
  11. Chapuis M-P, Estoup A (2007) Microsatellite null alleles and estimation of population differentiation. Mol Biol Evol 24:621–631CrossRefPubMedGoogle Scholar
  12. Chybicki IJ, Burczky J (2009) Simultaneous estimation of null alleles and inbreeding coefficients. J Heredity 100:106–113CrossRefGoogle Scholar
  13. Cowley MJR, Thomas CD, Roy DB, Wilson RJ, León-Cortés JL, Gutiérrez D, Bulman CR, Quinn RM, Moss D, Gaston KJ (2001) Density-distribution relationships in British butterflies. I. The effect of mobility and spatial scale. J Anim Ecol 70:410–425Google Scholar
  14. Crnokrak P, Barrett SCH (2002) Purging the genetic load: a review of the experimental evidence. Evolution 56:2347–2358CrossRefPubMedGoogle Scholar
  15. Dakin EE, Avise JC (2004) Microsatellite null alleles in parentage analysis. Heredity 93:504–509CrossRefPubMedGoogle Scholar
  16. Davey JW, Hohenlohe PA, Etter PD, Boone JQ, Catchen JM, Blaxter MJ (2011) Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat Rev Genet 12:499–510CrossRefPubMedGoogle Scholar
  17. Dennis RLH, Dapporto L, Fattorini S, Cook LM (2011) The generalism–specialism debate: the role of generalists in the life and death of species. Biol J Linn Soc 104:725–737CrossRefGoogle Scholar
  18. Ebert G, Rennwald E (1991) Die Schmetterlinge Baden-Württembergs, vol 1. E. Ulmer, StuttgartGoogle Scholar
  19. ESRI (1995) ArcView GIS for Windows, version 3.2. ESRI, Redlands, CaliforniaGoogle Scholar
  20. Excoffier L, Lischer HE (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Res 10:564–567CrossRefGoogle Scholar
  21. Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Ann Rev Ecol Evol Syst 34:487–515CrossRefGoogle Scholar
  22. Finger A, Schmitt T, Zachos FE, Meyer M, Assmann T, Habel JC (2009) The genetic status of the violet copper Lycaena helle—a relict of the cold past in times of global warming. Ecography 32:383–390CrossRefGoogle Scholar
  23. Frankham R, Ballou JD, Briscoe DA (2002) Introduction to conservation genetics. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  24. Gadeberg RME, Boomsma JJ (1997) Genetic population structure of the large blue butterfly Maculinea alcon in Denmark. J Insect Conserv 1:99–111CrossRefGoogle Scholar
  25. Gautschi B, Tenzer I, Müller JP, Schmid B (2000a) Isolation and characterization of microsatellite loci in the bearded vulture (Gypaetus barbatus) and cross amplification in three old world vulture species. Mol Ecol 9:2193–2195CrossRefPubMedGoogle Scholar
  26. Gautschi B, Widmer A, Koella J (2000b) Isolation and characterization of microsatellite loci in the dice snake (Natrix tessellata). Mol Ecol 9:2191–2193PubMedGoogle Scholar
  27. Goudet J (1995) FSTAT (Version 1.2): a computer program to calculate F-statistics. J Heredity 86:485–486Google Scholar
  28. Habel JC, Schmitt T (2009) The genetic consequences of different dispersal behaviours in Lycaenid butterfly species. Bull Entomol Res 99:513–523CrossRefPubMedGoogle Scholar
  29. Habel JC, Schmitt T (2012) The burden of genetic diversity. Biol Conserv 147:270–274CrossRefGoogle Scholar
  30. Habel JC, Schmitt T, Meyer M, Finger A, Rödder D, Assmann T, Zachos FE (2010) Biogeography meets conservation: the genetic structure of the endangered lycaenid butterfly Lycaena helle (Denis & Schiffermüller, 1775). Biol J Linn Soc 101:155–168CrossRefGoogle Scholar
  31. Habel JC, Rödder D, Schmitt T, Nève G (2011) Global warming will affect the genetic diversity and uniqueness of Lycaena helle populations. Global Change Biol 17:194–205CrossRefGoogle Scholar
  32. Habel JC, Rödder D, Schmitt T, Lens L (2013) The genetic signature of ecologically diverging grassland lepidopterans. Biodiv Conserv 22:2401–2411CrossRefGoogle Scholar
  33. Hamilton MB, Pincus EL, Di Fiore A, Fleischer RC (1999) Universal linker and ligation procedures for construction of genomic DNA libraries enriched for microsatellites. Biotechniques 27:500–507PubMedGoogle Scholar
  34. Hampe A, Petit RJ (2005) Conserving biodiversity under climate change: the rear edge matters. Ecol Lett 8:461–467CrossRefPubMedGoogle Scholar
  35. Hanski I (1994) A practical model of metapopulation dynamics. J Anim Ecol 63:151–162CrossRefGoogle Scholar
  36. Harper GL, Maclean N, Goulson D (2003) Microsatellite markers to assess the influence of population size, isolation and demographic change on the genetic structure of the UK butterfly Polyommatus bellargus. Mol Ecol 12:2249–3357CrossRefGoogle Scholar
  37. Hunt JJFG, Bonsall MB (2009) The effects of colonization, extinction and competition on co-existence in metacommunities. J Anim Ecol 78:866–879CrossRefPubMedGoogle Scholar
  38. Karl I, Schmitt T, Fischer K (2009) PGI genotype affects life history traits and temperature stress resistance in a copper butterfly. Func Ecol 22:887–894CrossRefGoogle Scholar
  39. Keller I, Nentwig W, Largiader CR (2004) Recent habitat fragmentation due to roads can lead to significant genetic differentiation in an abundant flightless ground beetle. Mol Ecol 13:2983–2994CrossRefPubMedGoogle Scholar
  40. Keyghobadi N, Roland J, Strobeck C (2002) Influence of landscape on the population genetic structure of the alpine butterfly Parnassius smintheus (Papilionidae). Mol Ecol 8:1481–1495CrossRefGoogle Scholar
  41. Keyghobadi N, Roland J, Strobeck C (2005) Genetic differentiation and gene flow among populations of the alpine butterfly, Parnassius smintheus, vary with landscape connectivity. Mol Ecol 14:1897–1909CrossRefPubMedGoogle Scholar
  42. Krauss J, Steffan-Dewenter I, Tscharntke T (2003) How does landscape context contribute to effects of habitat fragmentation on diversity and population density of butterflies? J Biogeogr 30:889–900CrossRefGoogle Scholar
  43. Krauss J, Schmitt T, Seitz A, Steffan-Dewenter I, Tscharntke T (2004) Effects of habitat fragmentation on the genetic structure of the monophagous butterfly Polyommatus coridon along its northern range margin. Mol Ecol 13:311–320CrossRefPubMedGoogle Scholar
  44. Krauss J, Steffan-Dewenter I, Müller CB, Tscharntke T (2005) Relative importance of resource quantity, isolation and habitat quality for landscape distribution of a monophagous butterfly. Ecography 28:465–474CrossRefGoogle Scholar
  45. Krauss J, Bommarco R, Guardiola M, Heikkinen RK, Helm A, Kuussaari M, Lindborg R, Öckinger E, Pärtel M, Pino J, Pöyry J, Raatikainen KM, Sang A, Stefanescu C, Teder T, Zobel M, Steffan-Dewenter I (2010) Habitat fragmentation causes immediate and time-delayed biodiversity loss at different trophic levels. Ecol Lett 13:597–605CrossRefPubMedCentralPubMedGoogle Scholar
  46. Krebs JR, Wilson JD, Bradbury RB, Siriwardena GM (1999) The second silent spring? Nature 400:611–612CrossRefGoogle Scholar
  47. Kudrna O, Harpke A, Lux K, Pennerstorfer J, Schweiger O, Settele J, Wiemers M (2011) Distribution atlas of butterflies in Europe. Gesellschaft für Schmetterlingsschutz e.V, Halle 576 ppGoogle Scholar
  48. Kuussaari M, Bommarco R, Heikkinen RK, Helm A, Krauss J, Lindborg R, Öckinger E, Pärtel M, Pino J, Rodà F, Stefanescu C, Teder T, Zobel M, Steffan-Dewenter I (2009) Extinction debt: a challenge for biodiversity conservation. Trends Ecol Evol 24:564–571Google Scholar
  49. Louy D, Habel JC, Schmitt T, Meyer M, Assmann T, Müller P (2007) Strongly diverging population genetic patterns of three skipper species: isolation, restricted gene flow and panmixis. Conserv Genet 8:671–681CrossRefGoogle Scholar
  50. Madsen T, Ujvari B, Olsson M (2004) Novel genes continue to enhance population growth in adders (Vipera berus). Biol Conserv 120:145–147CrossRefGoogle Scholar
  51. Meglecz E, Petenian F, Danchin E, Coeur d´Acier S, Rasplus J-Y, Faure E (2004) High similarity between flanking regions of different microsatellites detected within each of two species of Lepidoptera: Parnassius apollo and Euphydryas aurinia. Mol Ecol 13:1693–1700Google Scholar
  52. Melbourne BA, Hastings A (2008) Extinction risk depends strongly on factors contributing to stochasticity. Nature 454:100–103CrossRefPubMedGoogle Scholar
  53. Moilanen A, Nieminen M (2002) Simple connectivity measures in spatial ecology. Ecology 83:1131–1145CrossRefGoogle Scholar
  54. Narum SR, Buerkle CA, Davey JW, Miller MR, Hohenlohe PA (2013) Genotyping-by-sequencing in ecological and conservation genomics. Mol Ecol 22:2841–2847CrossRefPubMedCentralPubMedGoogle Scholar
  55. Pecsenye K, Bereczki J, Tihanyi B, Tóth A, Peregovits L, Varga Z (2007a) Genetic differentiation among the Maculinea species (Lepidoptera: Lycaenidae) in eastern Central Europe. Biol J Linn Soc 91:11–21CrossRefGoogle Scholar
  56. Pecsenye K, Bereczki J, Szilágyi M, Varga Z (2007b) High level of genetic variation in Aricia artaxerxes issekutzi (Lycaenidae) populations in Northern Hungary. Nota Lepidopterologica 30:225–234Google Scholar
  57. Petit S, Moilanen A, Hanski I, Baguette M (2003) Metapopulation dynamics of the bog fritillary butterfly: movements between habitat patches. Oikos 92:491–500CrossRefGoogle Scholar
  58. Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Heredity 86:248–249Google Scholar
  59. Reinhardt R, Feldmann R, Herrmann G, Settele J, Steiner R (2009) Schmetterlinge: Die Tagfalter Deutschlands, Ulmer VerlagGoogle Scholar
  60. Rosin ZM, Myczko L, Skórka P, Lenda M, Moron D, Sparks TH, Tryjanowski P (2012) Butterfly responses to environmental factors in fragmented calcareous grasslands. J Insect Conserv 16:321–329CrossRefGoogle Scholar
  61. Rousset F (2008) Genepop 007: a complete re-implementation of the genepop software for Windows and Linux. Mol Ecol Res 8:103–106CrossRefGoogle Scholar
  62. Rutkowski R, Sielezniew M, Szostak A (2009) Contrasting levels of polymorphism in cross-amplified microsatellites in two endangered xerothermophilous, obligatorily myrmecophilous, butterflies of the genus Phengaris (Maculinea) (Lepidoptera: Lycaenidae). Eur J Entomol 106:457–469CrossRefGoogle Scholar
  63. Saccheri I, Kuusaari M, Kankare M, Vikman P, Fortelius W, Hanski I (1998) Inbreeding and extinction in a butterfly metapopulation. Nature 392:491–494CrossRefGoogle Scholar
  64. Schmitt T, Seitz A (2001) Allozyme variation in Polyommatus coridon (Lepidoptera: Lycaenidae): identification of ice-age refugia and reconstruction of post-glacial expansion. J Biogeogr 28:1129–1136Google Scholar
  65. Schmitt T, Seitz A (2002a) Influence of habitat fragmentation on the genetic structure of Polyommatus coridon (Lepidoptera: Lycaenidae): implications for conservation. Biol Conserv 107:291–297CrossRefGoogle Scholar
  66. Schmitt T, Seitz A (2002b) Postglacial distribution area expansion of Polyommatus coridon (Lepidoptera: Lycaenidae) from its Ponto-Mediterranean glacial refugium. Heredity 89:20–26CrossRefPubMedGoogle Scholar
  67. Schmitt T, Gießl A, Seitz A (2003) Did Polyommatus icarus (Lepidoptera: Lycaenidae) have distinct glacial refugia in southern Europe?—Evidence from population genetics. Biol J Linn Soc 80:529–538CrossRefGoogle Scholar
  68. Schmitt T, Habel JC, Besold J, Becker T, Johnen L, Knolle M, Rzepecki A, Schultze J, Zapp A (2006) The Chalk-hill Blue Polyommatus coridon (Lycaenidae, Lepidoptera) in a highly fragmented landscape: how sedentary is a sedentary butterfly? J Insect Conserv 10:311–316CrossRefGoogle Scholar
  69. Schuelke M (2000) An economic method for the fluorescent labelling of PCR fragments. Nat Biotechnol 18:233–234CrossRefPubMedGoogle Scholar
  70. Selkoe KA, Toonen RJ (2006) Microsatellites for ecologists: a practical guide to using and evaluating microsatellite markers. Ecol Lett 9:615–629CrossRefPubMedGoogle Scholar
  71. Settele J, Feldmann R, Reinhardt R (2000) Die Tagfalter Deutschlands. Ulmer, StuttgartGoogle Scholar
  72. Sielezniew M, Rutkowski R (2012) Population isolation rather than ecological variation explains the genetic structure of endangered myrmecophilous butterfly Phengaris (=Maculinea) arion. Insect Conserv Div 5:223–236CrossRefGoogle Scholar
  73. Slatkin M (1987) Gene flow and the geographic structure of natural populations. Science 236:787CrossRefPubMedGoogle Scholar
  74. Steffan-Dewenter I, Tscharntke T (2000) Butterfly community structure in fragmented habitats. Ecol Lett 3:449–456CrossRefGoogle Scholar
  75. Stork VL, Waits L (2010) Contributions of landscape genetics—approaches, insights, and future potential. Mol Ecol 19:3489–3495CrossRefGoogle Scholar
  76. Ugelvig LV, Andersen A, Boomsma JJ, Nash DR (2012) Dispersal and gene flow in the rare, parasitic large blue butterfly Maculinea arion. Mol Ecol 21:3224–3236CrossRefPubMedGoogle Scholar
  77. Van de Peer Y (2002) ZT: a software tool for simple and partial Mantel tests. J Stat Softw 7:1–12Google Scholar
  78. Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) Micro-checker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538CrossRefGoogle Scholar
  79. Van Swaay C, Warren M, Loïs G (2006) Biotope use and trends of European butterflies. J Insect Conserv 10:189–209CrossRefGoogle Scholar
  80. WallisDeVries MF, Poschlod P, Willems JH (2002) Challenges for the conservation of calcareous grasslands in Northwestern Europe: integrating the requirements of flora and fauna. Biol Conserv 104:265–273CrossRefGoogle Scholar
  81. Zeisset I, Als TD, Settele J, Boomsma JJ (2005) Microsatellite markers for the large blue butterflies Maculinea nausithous and Maculinea alcon (Lepidoptera: Lycaenidae) and their amplification in other Maculinea species. Mol Ecol Notes 5:165–168CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Jan Christian Habel
    • 1
  • Sabrina V. Brückmann
    • 2
    Email author
  • Jochen Krauss
    • 3
  • Julia Schwarzer
    • 4
    • 5
  • Alfons Weig
    • 6
  • Martin Husemann
    • 7
  • Ingolf Steffan-Dewenter
    • 3
  1. 1.Terrestrial Ecology Research Group, Department of Ecology and Ecosystem ManagementTechnische Universität MünchenFreising-WeihenstephanGermany
  2. 2.Population Ecology Group, Department of Animal Ecology IUniversity of BayreuthBayreuthGermany
  3. 3.Department of Animal Ecology and Tropical BiologyUniversity of Würzburg, BiocenterWürzburgGermany
  4. 4.EAWAG Centre of Ecology, Evolution and Biogeochemistry, Swiss Federal Institute for Aquatic Science and Technology, Fish Ecology and EvolutionKastanienbaumSwitzerland
  5. 5.Zoologisches Forschungsmuseum Alexander KoenigBonnGermany
  6. 6.DNA Analytics and EcoinformaticsUniversity of BayreuthBayreuthGermany
  7. 7.General Zoology, Institute of BiologyUniversity of Halle (Saale)HalleGermany

Personalised recommendations