Conservation Genetics

, Volume 16, Issue 3, pp 523–533 | Cite as

Multivariate analysis of polyploid data reveals the role of railways in the spread of the invasive South African Ragwort (Senecio inaequidens)

  • Élodie Blanchet
  • Caterina PenoneEmail author
  • Noëlie Maurel
  • Claire Billot
  • Ronan Rivallan
  • Ange-Marie Risterucci
  • Sandrine Maurice
  • Fabienne Justy
  • Nathalie Machon
  • Florence Noël
Research Article


Genetic studies constitute a powerful approach to study the introduction and expansion of invasive species. Senecio inaequidens DC is one of the Europe’s fastest plant invaders and is suspected to use railway corridors to expand. In France, the species has first been observed in the city of Paris in the late 1990’s and today it is present throughout the region. In order to assess the role of railways in S. inaequidens invasion, we used innovative multivariate analyses to study population genetic diversity of this allotetraploid species. We analyzed the genetic diversity at 11 microsatellite markers of a total of 450 individuals sampled at 15 locations along railways connecting the city of Paris to the surrounding suburban/rural areas. Geographical distances among locations ranged from 1 to 83 km with four locations within Paris at the departure train stations of the national/international train lines studied. To our knowledge, studies on invasive allotetraploid plants where data were kept in the tetraploid format are still scarce. Our analyses revealed substantial genetic diversity and clear genetic differentiation among some populations, with a genetic gradient detected along one railway line. Results also showed no genetic bottleneck between Parisian populations and the historically introduced population located in South of France. Our study thus revealed the role of railways as a corridor among S. inaequidens populations within central Paris. However, connecting networks appeared more complex in the suburban and rural areas suggesting other potential vectors.


Multivariate analyses Corridors Genetic diversity Isolation by distance SSR markers Tetraploidy 



This work was supported by the Réseau de Recherche sur le Développement Soutenable (R2DS); and the Société Nationale des Chemins de fer Français (SNCF). The authors would like to thank the three anonymous reviewers and the editor A. Jump for their helpful comments on a previous version of the manuscript.

Supplementary material

10592_2014_676_MOESM1_ESM.doc (899 kb)
ESM_A1: Map of site locationsESM_A2: PCR and genotyping conditionsESM_A3: Genetic differentiation between DAPC clustersESM_A4: Genetic differentiation parameters between all populationsESM_A5: Bayesian analysesESM_A6: Railway bridges along North, East and South linesSupplementary material 1 (DOC 899 kb)


  1. Bangert R, Huntly N (2010) The distribution of native and exotic plants in a naturally fragmented sagebrush-steppe landscape. Biol Invasions 12:1627–1640CrossRefGoogle Scholar
  2. Chao A, Shen TJ (2003) Non-parametric estimation of Shannon’s index of diversity when there are unseen species in sample. Environ Ecol Stat 10:429–443CrossRefGoogle Scholar
  3. Clark LV, Jasieniuk M (2011) Polysat: an R package for polyploid microsatellite analysis. Mol Ecol Notes 11:562–566CrossRefGoogle Scholar
  4. Corander J, Marttinen P, Siren J, Tang J (2008) Enhanced Bayesian modelling in BAPS software for learning genetic structures of populations. BMC Bioinform 9:539–552CrossRefGoogle Scholar
  5. Dray S, Dufour AB (2007) The ade4 package: implementing the duality diagram for ecologists. J Stat Softw 22:1–20Google Scholar
  6. Dufresne F, Stift M, Vergilino R, Mable BK (2014) Recent progress and challenges in population genetics of polyploid organisms: an overview of current state-of-the-art molecular and statistical tools. Mol Ecol 23:40–69CrossRefPubMedGoogle Scholar
  7. Ernst (1998) Invasion, dispersal and ecology of the South African neophyte Senecio inaequidens in The Netherlands: from wool alien to railway and road alien. Acta Bot Neerl 47:131–151Google Scholar
  8. Estoup A, Guillemaud T (2010) Reconstructing routes of invasion using genetic data: why, how and so what? Mol Ecol 19:4113–4130CrossRefPubMedGoogle Scholar
  9. Ficetola GF, Bonin A, Miaud C (2008) Population genetics reveals origin and number of founders in a biological invasion. Mol Ecol 17:773–782CrossRefPubMedGoogle Scholar
  10. Hansen MJ, Clevenger AP (2005) The influence of disturbance and habitat on the presence of non-native plant species along transport corridors. Biol Conserv 125:249–259CrossRefGoogle Scholar
  11. Hejda M, Pyšek P, Jarosik V (2009) Impact of invasive plants on the species richness, diversity and composition of invaded communities. J Ecol 97:393–403CrossRefGoogle Scholar
  12. Henry HP, Maurin H, Lizet B, Wolf AE, Celecia J (1999) Les inventaires du patrimoine naturel en milieu urbain: Paris. In: Paris, p 333–355Google Scholar
  13. Hilliard OM (1977) Compositae in Natal. University of Natal Press, PietermaritzburgGoogle Scholar
  14. Jombart T (2008) Adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24:1403–1405CrossRefPubMedGoogle Scholar
  15. Jombart T, Pontier D, Dufour AB (2009) Genetic markers in the playground of multivariate analysis. Heredity 102:330–341CrossRefPubMedGoogle Scholar
  16. Jombart T, Devillard S, Balloux F (2010) Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet 11:94–108CrossRefPubMedCentralPubMedGoogle Scholar
  17. Justy F, Maurice S (2012) Isolation and characterisation of polymorphic microsatellite loci markers for the invasive Senecio inaequidens DC. (Asteraceae). Conserv Genet Resour 4:703–705CrossRefGoogle Scholar
  18. Kowarik I, von der Lippe M (2007) Pathways in plant invasions. In: Nentwig W (ed) Biological invasions, ecological studies, vol 193. Springer, Berlin Heidelberg, pp 29–47CrossRefGoogle Scholar
  19. Lachmuth S, Durka W, Schurr FM (2010) The making of a rapid plant invader: genetic diversity and differentiation in the native and invaded range of Senecio inaequidens. Mol Ecol 19:3952–3967CrossRefPubMedGoogle Scholar
  20. Lafuma L, Balkwill K, Imbert E, Verlaque R, Maurice S (2003) Ploidy level and origin of the European invasive weed Senecio inaequidens (Asteraceae). Plant Syst Evol 243:59–72CrossRefGoogle Scholar
  21. Le Roux JJ, Wieczorek AM (2007) Isolation and characterization of polymorphic microsatellite markers from fireweed, Senecio madagascariensis Poir. (Asteraceae). Mol Ecol Notes 7:327–329CrossRefGoogle Scholar
  22. Lopez-Garcia MC, Maillet J (2005) Biological characteristics of an invasive south African species. Biol Invasions 7:181–194CrossRefGoogle Scholar
  23. Monty A, Mahy G (2010) Evolution of dispersal traits along an invasion route in the wind-dispersed Senecio inaequidens (Asteraceae). Oikos 119:1563–1570CrossRefGoogle Scholar
  24. Nei M (1972) Genetic distance between populations. Am Nat 106:283–292CrossRefGoogle Scholar
  25. Nei M (1973) Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci USA 70:3321–3323CrossRefPubMedCentralPubMedGoogle Scholar
  26. Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New YorkGoogle Scholar
  27. Penone C, Machon N, Julliard R, Le Viol I (2012) Do railway edges provide functional connectivity for plant communities in an urban context? Biol Conserv 148:126–133CrossRefGoogle Scholar
  28. Pimentel D, McNair S, Janecka J, Wightman J, Simmonds C, O’Connell C, Wong E, Russel L, Zern J, Aquino T, Tsomondo T (2001) Economic and environmental threats of alien plant, animal, and microbe invasions. Agric Ecosyst Environ 84:1–20CrossRefGoogle Scholar
  29. Pyšek P, Bacher S, Chytry M, Jarosik V, Wild J, Celesti-Grapow L, Gasso N, Kenis M, Lambdon PW, Nentwig W, Pergl J, Roques A, Sadlo J, Solarz W, Vila M, Hulme PE (2010) Contrasting patterns in the invasions of European terrestrial and freshwater habitats by alien plants, insects and vertebrates. Glob Ecol Biogeogr 19:317–331CrossRefGoogle Scholar
  30. Risterucci AM, Grivet L, N’Goran JAK, Pieretti I, Flament MH, Lanaud C (2000) A high-density linkage map of Theobroma cacao L. Theor Appl Genet 101:948–955CrossRefGoogle Scholar
  31. Rodzen JA, Famula TR, May B (2004) Estimation of parentage and relatedness in the polyploid white sturgeon (Acipenser transmontanus) using a dominant marker approach for duplicated microsatellite loci. Aquaculture 232:165–182CrossRefGoogle Scholar
  32. Rutledge LY, Garroway CJ, Loveless KM, Patterson BR (2010) Genetic differentiation of eastern wolves in Algonquin Park despite bridging gene flow between coyotes and grey wolves. Heredity 105:520–531CrossRefPubMedGoogle Scholar
  33. Sampson JF, Byrne M (2012) Genetic diversity and multiple origins of polyploid Atriplex nummularia Lindl. (Chenopodiaceae). Biol J Linn Soc 105:218–230CrossRefGoogle Scholar
  34. Scherber C, Crawley MJ, Porembski S (2003) The effects of herbivory and competition on the invasive alien plant Senecio inaequidens (Asteraceae). Divers Distrib 9:415–426CrossRefGoogle Scholar
  35. Trombulak SC, Frissell CA (2000) Review of ecological effects of roads on terrestrial and aquatic communities. Conserv Biol 14:18–30CrossRefGoogle Scholar
  36. Vacchiano G, Barni E, Lonati M, Masante D, Curtaz A, Tutino S, Siniscalco C (2013) Monitoring and modeling the invasion of the fast spreading alien Senecio inaequidens DC. in an alpine region. Plant Biosyst 147:1139–1147CrossRefGoogle Scholar
  37. Valliant MT, Mack RN, Novak SJ (2007) Introduction history and population genetics of the invasive grass Bromus tectorum (Poaceae) in Canada. Am J Bot 94:1156–1169CrossRefPubMedGoogle Scholar
  38. Van Puyvelde K, Van Geert A, Triest L (2010) ATETRA, a new software program to analyse tetraploid microsatellite data: comparison with TETRA and TETRASAT. Mol Ecol Resour 10:331–334CrossRefGoogle Scholar
  39. von der Lippe M, Kowarik I (2008) Do cities export biodiversity? Traffic as dispersal vector across urban–rural gradients. Divers Distrib 14:18–25CrossRefGoogle Scholar
  40. Way JG, Eatough DL (2006) Use of “Micro”-corridors by eastern Coyotes, Canis latrans, in a heavily urbanized area: implications for ecosystem management. Can Field Nat 120:474–476Google Scholar
  41. Wilson JRU, Dormontt EE, Prentis PJ, Lowe AJ, Richardson DM (2009) Something in the way you move: dispersal pathways affect invasion success. Trends Ecol Evol 24:136–144CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Élodie Blanchet
    • 1
  • Caterina Penone
    • 1
    • 2
    Email author
  • Noëlie Maurel
    • 1
    • 3
  • Claire Billot
    • 4
  • Ronan Rivallan
    • 4
  • Ange-Marie Risterucci
    • 4
  • Sandrine Maurice
    • 5
  • Fabienne Justy
    • 5
  • Nathalie Machon
    • 1
  • Florence Noël
    • 1
  1. 1.Centre d’Écologie et des Sciences de la Conservation (CESCO) UMR 7204, Muséum National d’Histoire Naturelle (MNHN)CNRS & UPMCParisFrance
  2. 2.Departamento de EcologiaUniversidade Federal do Rio Grande do NorteNatalBrazil
  3. 3.Ecology, Department of BiologyUniversity of KonstanzConstanceGermany
  4. 4.CIRADUMR AGAPMontpellierFrance
  5. 5.Institut des Sciences de l’Évolution (ISEM), UMR 5554Université Montpellier IIMontpellier Cedex 05France

Personalised recommendations