Conservation Genetics

, Volume 16, Issue 1, pp 137–150 | Cite as

Closely related and sympatric but not all the same: genetic variation of Indo-West Pacific Rhizophora mangroves across the Malay Peninsula

  • Wei Lun Ng
  • Yoshitaka Onishi
  • Nobuyuki Inomata
  • Kosuke M. Teshima
  • Hung Tuck Chan
  • Shigeyuki Baba
  • Suchitra Changtragoon
  • Iskandar Z. Siregar
  • Alfred E. Szmidt
Research Article

Abstract

Members of the mangrove genus Rhizophora represent the most commonly occurring and highly valued species in the Indo-West Pacific region. However, to date, few studies have been directed towards the understanding of their genetic variation. The levels and patterns of genetic variation at chloroplast and nuclear gene regions were studied in R. apiculata, R. mucronata, and R. stylosa sampled from Southeast Asia and Japan. All three species were characterized by low intraspecific genetic variation and a deficiency of heterozygotes in populations within the region, consistent with findings in studies on other mangrove species. Rhizophora mucronata and R. stylosa were also found to be more closely related than any of them with R. apiculata. During the Last Glacial Maximum, sea levels dropped to 120 m below the current levels, exposing part of the Sunda Shelf that became a barrier that limited gene flow between marine species living in the Pacific and Indian Oceans. Today, the Malay Peninsula is thought to still serve as a barrier to gene flow between populations occurring on its coasts. The pattern of genetic differentiation of R. apiculata supports the hypothesis of the land barrier effect of the Malay Peninsula, but such patterns were not found in R. mucronata and R. stylosa. Our findings suggest that R. apiculata, R. mucronata, and R. stylosa have different demographic histories despite being closely related and having sympatric distributions today. Furthermore, all three species appear to have high levels of inbreeding due to limited pollen and propagule dispersal, and that both these factors contributed to population differentiation.

Keywords

Population structure Sunda Shelf Sympatric species Hybridization Land barrier Propagule dispersal 

Supplementary material

10592_2014_647_MOESM1_ESM.pdf (664 kb)
Supplementary material 1 (PDF 664 kb)
10592_2014_647_MOESM2_ESM.zip (48 kb)
Supplementary material 1 (ZIP 48 kb)

References

  1. Alongi DM (2008) Mangrove forests: resilience, protection from tsunamis, and responses to global climate change. Estuar Coast Shelf Sci 76:1–13CrossRefGoogle Scholar
  2. Arnaud-Haond S, Teixeira S, Massa SI, Billot C, Saenger P, Coupland G, Duarte CM, Serrao EA (2006) Genetic structure at range edge: low diversity and high inbreeding in Southeast Asian mangrove (Avicennia marina) populations. Mol Ecol 15:3515–3525PubMedCrossRefGoogle Scholar
  3. Bandelt HJ, Forster P, Röhl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48PubMedCrossRefGoogle Scholar
  4. Cerón-Souza I, Rivera-Ocasio E, Medina E, Jimenez JA, McMillan WO, Bermingham E (2010) Hybridization and introgression in New World red mangroves, Rhizophora (Rhizophoraceae). Am J Bot 97(6):945–957Google Scholar
  5. Crandall ED, Frey MA, Grosberg RK, Barber PH (2008) Contrasting demographic history and phylogeographical patterns in two Indo-Pacific gastropods. Mol Ecol 17:611–626PubMedCrossRefGoogle Scholar
  6. Drexler JZ (2001) Maximum longevities of Rhizophora apiculata and R. mucronata propagules. Pac Sci 55:17–22CrossRefGoogle Scholar
  7. Duke NC (2006) Rhizophora apiculata, R. mucronata, R. stylosa, R. x annamalai, R. x lamarckii (Indo-West Pacific stilt mangrove), ver. 2.1. In: Elevitch CR (ed) Species profiles for Pacific Island agroforestry. Permanent Agriculture Resources, HolualoaGoogle Scholar
  8. Duke NC, Ball MC, Ellison JC (1998) Factors influencing biodiversity and distributional gradients in mangroves. Global Ecol Biogeogr Lett 7:27–47CrossRefGoogle Scholar
  9. Duke NC, Lo EYY, Sun M (2002) Global distribution and genetic discontinuities of mangroves—emerging patterns in the evolution of Rhizophora. Trees 16:65–79CrossRefGoogle Scholar
  10. Duke NC, Meynecke JO, Dittmann S, Ellison AM, Anger K, Berger U, Cannicci S, Diele K, Ewel KC, Field CD, Koedam N, Lee SY, Marchand C, Nordhaus I, Dahdouh-Guebas F (2007) A world without mangroves? Science 317:41–42PubMedCrossRefGoogle Scholar
  11. Earl DA, vonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361CrossRefGoogle Scholar
  12. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620PubMedCrossRefGoogle Scholar
  13. Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567PubMedCrossRefGoogle Scholar
  14. Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587PubMedCentralPubMedGoogle Scholar
  15. FAO (2007) The world’s mangroves 1980–2005. Food and Agriculture Organization of the United Nations, RomeGoogle Scholar
  16. Fitzpatrick JM, Carlon DB, Lippe C, Robertson DR (2011) The West Pacific diversity hotspot as a source or sink for new species? Population genetic insights from the Indo-Pacific parrotfish Scarus rubroviolaceus. Mol Ecol 20:219–234PubMedCrossRefGoogle Scholar
  17. Ge XJ, Sun M (2001) Population genetic structure of Ceriops tagal (Rhizophoraceae) in Thailand and China. Wetlands Ecol Manag 9:203–209CrossRefGoogle Scholar
  18. Giri C, Zhu Z, Tieszen LL, Singh A, Gillette S, Kelmelis JA (2008) Mangrove forest distributions and dynamics (1975–2005) of the tsunami-affected region of Asia. J Biogeogr 35:519–528CrossRefGoogle Scholar
  19. Giri C, Ochieng E, Tieszen LL, Zhu Z, Singh A, Loveland T, Masek J, Duke NC (2011) Status and distribution of mangrove forests of the world using earth observation satellite data. Global Ecol Biogeogr 20:154–159CrossRefGoogle Scholar
  20. Guo M, Zhou R, Huang Y, Ouyang J, Shi S (2011) Molecular confirmation of natural hybridization between Lumnitzera racemosa and L. littorea. Aquat Bot 95:59–64CrossRefGoogle Scholar
  21. Hamrick JL, Godt MJW, Sherman-Broyles SL (1992) Factors influencing levels of genetic diversity in woody plant species. New For 6:95–124CrossRefGoogle Scholar
  22. Huang Y, Tan F, Su G, Deng S, He H, Shi S (2008) Population genetic structure of three tree species in the mangrove genus Ceriops (Rhizophoraceae) from the Indo West Pacific. Genetica 133:47–56PubMedCrossRefGoogle Scholar
  23. Huang Y, Zhu C, Li X, Li X, Hu L, Tan F, Zhou R, Shi S (2012) Differentiated population structure of a genetically depauperate mangrove species Ceriops tagal revealed by both Sanger and deep sequencing. Aquat Bot 101:46–54CrossRefGoogle Scholar
  24. Inomata N, Wang XR, Changtragoon S, Szmidt AE (2009) Levels and patterns of DNA variation in two sympatric mangrove species, Rhizophora apiculata and R. mucronata from Thailand. Genes Genet Syst 84:277–286PubMedCrossRefGoogle Scholar
  25. Ishiyama H, Kado T, Iwasaki M, Matsuoka M, Shukor NA, Szmidt AE, Yamazaki T (2003) Nucleotide variation in the GapC region of four species of Shorea and their putative hybrids. Tropics 13:89–99CrossRefGoogle Scholar
  26. Ishiyama H, Inomata N, Yamazaki T, Ab Shukor NA, Szmidt AE (2008) Demographic history and interspecific hybridization of four Shorea species (Dipterocarpaceae) from Peninsular Malaysia inferred from nucleotide polymorphism in nuclear gene regions. Can J For Res 38:996–1007CrossRefGoogle Scholar
  27. Iwanaga H, Teshima KM, Khatab IA, Inomata N, Finkeldey R, Siregar IZ, Siregar UJ, Szmidt AE (2012) Population structure and demographic history of a tropical lowland rainforest tree species Shorea parvifolia (Dipterocarpaceae) from Southeastern Asia. Ecol Evol 2:1663–1675PubMedCentralPubMedCrossRefGoogle Scholar
  28. Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801–1806PubMedCrossRefGoogle Scholar
  29. Jian S, Ban J, Ren H, Yan H (2010) Low genetic variation detected within the widespread mangrove species Nypa fruticans (Palmae) from Southeast Asia. Aquat Bot 92:23–27CrossRefGoogle Scholar
  30. Jukes TH, Cantor CR (1969) Evolution of protein molecules. In: Munro HN (ed) Mammalian protein metabolism. Academic Press, New York, pp 21–132CrossRefGoogle Scholar
  31. Kathiresan K (2012) Importance of mangrove ecosystem. Int J Mar Sci 2:70–89Google Scholar
  32. Klekowski E (1998) Mutation rates in mangroves and other plants. Genetica 102–103:325–331CrossRefGoogle Scholar
  33. Kondo K, Nakamura T, Tsuruda K, Saito N, Yaguchi Y (1987) Pollination in Bruguiera gymnorrhiza and Rhizophora mucronata (Rhizophoraceae) in Ishigaki Island, the Ryukyu Islands, Japan. Biotropica 19:377–380CrossRefGoogle Scholar
  34. Lakshmi M, Parani M, Ram N, Parida A (2000) Molecular phylogeny of mangroves. VI. Intraspecific genetic variation in mangrove species Excoecaria agallocha L. (Euphorbiaceae). Genome 43:110–115PubMedCrossRefGoogle Scholar
  35. Lee SY, Kwok PW (2002) The importance of mangrove species association to the population biology of the sesarmine crabs Parasesarma affinis and Perisesarma bidens. Wetlands Ecol Manag 10:215–226CrossRefGoogle Scholar
  36. Liao PC, Havanond S, Huang S (2007) Phylogeography of Ceriops tagal (Rhizophoraceae) in Southeast Asia: the land barrier of the Malay Peninsula has caused population differentiation between the Indian Ocean and South China Sea. Conserv Genet 8:89–98CrossRefGoogle Scholar
  37. Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452PubMedCrossRefGoogle Scholar
  38. Lo EYY (2010) Testing hybridization hypotheses and evaluating the evolutionary potential of hybrids in mangrove plant species. J Evol Biol 23:2249–2261PubMedCrossRefGoogle Scholar
  39. Lowenfeld R, Klekowski EJJ (1992) Mangrove genetics I. Mating system and mutation rates of Rhizophora mangle in Florida and San Salvador Island. Bahamas. Intl J Plant Sci 153:394–399CrossRefGoogle Scholar
  40. Maguire TL, Saenger P, Baverstock P, Henry R (2000) Microsatellite analysis of genetic structure in the mangrove species Avicennia marina (Forsk.) Vierh. (Avicenniaceae). Mol Ecol 9:1853–1862PubMedCrossRefGoogle Scholar
  41. Maguire TL, Peakall R, Saenger P (2002) Comparative analysis of genetic diversity in the mangrove species Avicennia marina (Forsk.) Vierh. (Avicenniaceae) detected by AFLPs and SSRs. Theor Appl Genet 104:388–398PubMedCrossRefGoogle Scholar
  42. Minobe S, Fukui S, Saiki R, Kajita T, Changtragoon S, Ab Shukor NA, Latiff A, Ramesh B, Koizumi O, Yamazaki T (2010) Highly differentiated population structure of a mangrove species, Bruguiera gymnorhiza (Rhizophoraceae) revealed by one nuclear GapCp and one chloroplast intergenic spacer trnF-trnL. Conserv Genet 11:301–310CrossRefGoogle Scholar
  43. Mohd Nasir H, Safiah Yusmah MY (2007) Distribution of Rhizophora stylosa in Peninsular Malaysia. J Trop For Sci 19:57–60Google Scholar
  44. Nei M (1987) Molecular Evolutionary Genetics. Columbia University Press, New YorkGoogle Scholar
  45. Ng WL, Chan HT (2012) Survey of Rhizophora stylosa populations in Peninsular Malaysia. ISME/GLOMIS Electron J 10:4–6Google Scholar
  46. Ng WL, Chan HT, Szmidt AE (2013) Molecular identification of natural mangrove hybrids of Rhizophora in Peninsular Malaysia. Tree Genetics & Genomes 9:1151–1160CrossRefGoogle Scholar
  47. Ng WL, Szmidt AE (2014) Introgressive hybridization in two Indo-West Pacific Rhizophora mangrove species, R. mucronata and R. stylosa. Aquat Bot (in press)Google Scholar
  48. Osti R, Tanaka S, Tokioka T (2009) The importance of mangrove forest in tsunami disaster mitigation. Disasters 33:203–213PubMedCrossRefGoogle Scholar
  49. Polidoro BA, Carpenter KE, Collins L, Duke NC, Ellison AM, Ellison JC, Farnsworth EJ, Fernando ES, Kathiresan K, Koedam NE, Livingstone SR, Miyagi T, Moore GE, Ngoc Nam V, Ong JE, Primavera JH, Salmo SG, Sanciangco JC, Sukardjo S, Wang Y, Yong JW (2010) The loss of species: mangrove extinction risk and geographic areas of global concern. PLoS One 5:e10095PubMedCentralPubMedCrossRefGoogle Scholar
  50. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedCentralPubMedGoogle Scholar
  51. Rieseberg LH, Soltis DE (1991) Phylogenetic consequences of cytoplasmic gene flow in plants. Evolut Trends Plants 5:65–84Google Scholar
  52. Rosenberg NA (2004) DISTRUCT: a program for the graphical display of population structure. Mol Ecol Notes 4:137–138CrossRefGoogle Scholar
  53. Salas-Leiva DE, Mayor-Durán VM, Toro-Perea N (2009) Genetic diversity of the black mangrove (Avicennia germinans L.) in Colombia. Aquat Bot 91:187–193CrossRefGoogle Scholar
  54. Spalding M, Kainuma M, Collins L (2010) World atlas of mangroves. Earthscan, LondonGoogle Scholar
  55. Spielman D, Brook BW, Frankham R (2004) Most species are not driven to extinction before genetic factors impact them. PNAS 101:15261–15264PubMedCentralPubMedCrossRefGoogle Scholar
  56. Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595PubMedCentralPubMedGoogle Scholar
  57. Takayama K, Tamura M, Tateishi Y, Webb EL, Kajita T (2013) Strong genetic structure over the American continents and transoceanic dispersal in the mangrove genus Rhizophora (Rhizophoraceae) revealed by broad-scale nuclear and chloroplast DNA analysis. Am J Bot 100:1191–1201PubMedCrossRefGoogle Scholar
  58. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739PubMedCentralPubMedCrossRefGoogle Scholar
  59. Tan F, Huang Y, Ge X, Su G, Ni X, Shi S (2005) Population genetic structure and conservation implications of Ceriops decandra in Malay Peninsula and North Australia. Aquat Bot 81:175–188CrossRefGoogle Scholar
  60. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680PubMedCentralPubMedCrossRefGoogle Scholar
  61. Tomlinson PB (1986) The botany of mangroves. Cambridge University Press, CambridgeGoogle Scholar
  62. Urashi C, Teshima KM, Minobe S, Koizumi O, Inomata N (2013) Inferences of evolutionary history of a widely distributed mangrove species, Bruguiera gymnorrhiza, in the Indo-West Pacific region. Ecol Evol 3:2251–2261PubMedCentralPubMedCrossRefGoogle Scholar
  63. Valiela I, Bowen JL, York JK (2001) Mangrove forests: one of the world’s threatened major tropical environments. Bioscience 51:807–815CrossRefGoogle Scholar
  64. Voris HK (2000) Maps of Pleistocene sea levels in Southeast Asia: shorelines, river systems and time durations. J Biogeogr 27:1153–1167CrossRefGoogle Scholar
  65. Wang B, Mahani MK, Ng WL, Kusumi J, Phi HH, Inomata N, Wang X-R, Szmidt AE (2014) Extremely low polymorphism in Pinus krempfii Lecomte, a unique flat needle pine endemic to Vietnam. Ecol Evol. doi:10.1002/ece Google Scholar
  66. Wee AKS, Takayama K, Asakawa T, Thompson B, Sungkaew S, Tung NX, Saleh MN, Soe KK, Tan HTW, Watano Y, Baba S, Kajita T, Webb EL (2014) Oceanic currents, not land masses, maintain the genetic structure of the mangrove Rhizophora mucronata Lam. (Rhizophoraceae) in Southeast Asia. J Biogeogr 41:954–964CrossRefGoogle Scholar
  67. Wolanski E, Spagnol S, Lim EB (1997) The importance of mangrove flocs in sheltering seagrass in turbid coastal waters. Mangroves Salt Marshes 1:187–191CrossRefGoogle Scholar
  68. Yahya AF, Hyun JO, Lee JH, Kim YY, Lee KM, Hong KN, Kim SC (2014) Genetic variation and population genetic structure of Rhizophora apiculata (Rhizophoraceae) in the greater Sunda Islands, Indonesia using microsatellite markers. J Plant Res 127:287–297PubMedCrossRefGoogle Scholar
  69. Zhang Z, Zhou R, Tang T, Huang Y, Zhong Y, Shi S (2008) Genetic variation in central and peripheral populations of Excoecaria agallocha from Indo-West Pacific. Aquat Bot 89:57–62CrossRefGoogle Scholar
  70. Zhou R, Shi S, Wu CI (2005) Molecular criteria for determining new hybrid species—an application to the Sonneratia hybrids. Mol Phylogenet Evol 35:595–601PubMedCrossRefGoogle Scholar
  71. Zhou R, Zeng K, Wu W, Chen X, Yang Z, Shi S, Wu CI (2007) Population genetics of speciation in nonmodel organisms: I. Ancestral polymorphism in mangroves. Mol Biol Evol 24:2746–2754PubMedCrossRefGoogle Scholar
  72. Zhou R, Qiu S, Zhang M, Guo M, Chen S, Shi S (2010) Sonneratia ovata Backer—a genetically depauperate mangrove species. Biochem Syst Ecol 38:697–701CrossRefGoogle Scholar
  73. Zhou R, Ling S, Zhao W, Osada N, Chen S, Zhang M, He Z, Bao H, Zhong C, Zhang B, Lu X, Turissini D, Duke NC, Lu J, Shi S, Wu CI (2011) Population genetics in nonmodel organisms: II. Natural selection in marginal habitats revealed by deep sequencing on dual platforms. Mol Biol Evol 28:2833–2842PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Wei Lun Ng
    • 1
    • 5
  • Yoshitaka Onishi
    • 1
    • 6
  • Nobuyuki Inomata
    • 1
    • 7
  • Kosuke M. Teshima
    • 1
  • Hung Tuck Chan
    • 2
  • Shigeyuki Baba
    • 2
  • Suchitra Changtragoon
    • 3
  • Iskandar Z. Siregar
    • 4
  • Alfred E. Szmidt
    • 1
  1. 1.Graduate School of Systems Life SciencesKyushu UniversityFukuokaJapan
  2. 2.International Society for Mangrove Ecosystems (ISME)OkinawaJapan
  3. 3.Forest Genetics and Biotechnology Division, Forest and Plant Conservation Research Office, Department of National ParkWildlife and Plant ConservationBangkokThailand
  4. 4.Department of Silviculture, Faculty of ForestryBogor Agricultural University (IPB)BogorIndonesia
  5. 5.Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular SciencesUniversiti Putra MalaysiaSelangorMalaysia
  6. 6.Graduate School of ScienceOsaka UniversityOsakaJapan
  7. 7.Department of Environmental Science, International College of Arts and SciencesFukuoka Women’s UniversityFukuokaJapan

Personalised recommendations