Conservation Genetics

, Volume 15, Issue 5, pp 1231–1242 | Cite as

Development of genetic structure in a heterogeneous landscape over a short time frame: the reintroduced Asiatic wild ass

  • Tomer Gueta
  • Alan R. Templeton
  • Shirli Bar-David
Research Article


Understanding the dynamics of genetic structures which arise during a population’s range expansion can be applied to the conservation of recovering species and species that are shifting their range. Theoretical models, supported by several empirical findings, have indicated that fine-scaled genetic structure can arise at the wave front of a spatially expanding population. We explored the development of population genetic structure in the reintroduced Asiatic wild ass (Equus hemionus) in Israel, four generations after the onset of reintroduction, during which the population experienced demographic growth and range expansion over a complex landscape. Blood samples of the ‘founding-population’ and fecal samples of the ‘wild-population’, collected throughout the range of distribution were analyzed using mtDNA markers. Fecal samples were delimitated to ‘subpopulations’ according to their geographical locations. The “East” subpopulation, at the wave front of the wild population’s distribution, was found to be significantly different than the rest of the population (AMOVA, ΦST = 0.13, P = 0.04). These findings were supported by an FST-test, Spatial-AMOVA and a Barrier analysis. The “East” region is characterized by high quality habitat patches and low landscape connectivity to the rest of the area, which possibly led to its relative isolation. The “East” subpopulation was probably initiated following a founder-effect of dispersers from the release area, which remained in the ‘new area’, due to its high habitat quality. This genetic structure, though it might diminish over time due to gene flow and additional range expansion, has the potential of facilitating adaptive evolution and thereby affecting the population’s long term persistence.


Landscape genetics Range expansion Non-invasive genetics mtDNA Reintroduction Equus hemionus 



We would like to thank Oded Nezer, Edith Speyer, Sharon Renan, Naama Shahar, Amos Bouskila, Gili Greenbaum, Tali Brunner, Alejandro Centeno-Cuadros, David Saltz, Yaron Ziv and Gal Vine for their valuable contributions to this study. This research was supported by the United States-Israel Binational Science Foundation grant 2009296 awarded to S. Bar-David and A.R. Templeton and by the Israel Nature and Park Authority. TG was supported by a scholarship from the Albert Katz International School for Desert Studies, the Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Israel. This is publication 837 of the Mitrani Department of Desert Ecology.

Supplementary material

10592_2014_614_MOESM1_ESM.doc (1.3 mb)
Supplementary material 1 (DOC 1314 kb)


  1. Auger-Rozenberg MM, Boivin T, Magnoux E et al (2012) Inferences on population history of a seed chalcid wasp: invasion success despite a severe founder effect from an unexpected source population. Mol Ecol 21:6086–6103. doi:10.1111/mec.12077 PubMedCrossRefGoogle Scholar
  2. Austerlitz F, Jung-Muller B, Godelle B, Gouyon P-H (1997) Evolution of coalescence times, genetic diversity and structure during colonization. Theor Popul Biol 51:148–164. doi:10.1006/tpbi.1997.1302 CrossRefGoogle Scholar
  3. Bélisle M (2005) Measuring landscape connectivity: the challenge of behavioral landscape ecology. Ecology 86:1988–1995CrossRefGoogle Scholar
  4. Boessenkool S, Star B, Waters JM, Seddon PJ (2009) Multilocus assignment analyses reveal multiple units and rare migration events in the recently expanded yellow-eyed penguin (Megadyptes antipodes). Mol Ecol 18:2390–2400. doi:10.1111/j.1365-294X.2009.04203.x PubMedCrossRefGoogle Scholar
  5. Bohonak AJ (1999) Dispersal, gene flow, and population structure. Q Rev Biol 74:21–45PubMedCrossRefGoogle Scholar
  6. Braunisch V, Segelbacher G, Hirzel AH (2010) Modelling functional landscape connectivity from genetic population structure: a new spatially explicit approach. Mol Ecol 19:3664–3678. doi:10.1111/j.1365-294X.2010.04703.x PubMedCrossRefGoogle Scholar
  7. Bridle JR, Vines TH (2007) Limits to evolution at range margins: when and why does adaptation fail? Trends Ecol Evol 22:140–147. doi:10.1016/j.tree.2006.11.002 PubMedCrossRefGoogle Scholar
  8. Broquet T, Petit EJ (2009) Molecular estimation of dispersal for ecology and population genetics. Annu Rev Ecol Evol Syst 40:193–216. doi:10.1146/annurev.ecolsys.110308.120324 CrossRefGoogle Scholar
  9. Burton OJ, Travis JMJ (2008) The frequency of fitness peak shifts is increased at expanding range margins due to mutation surfing. Genetics 179:941–950. doi:10.1534/genetics.108.087890 PubMedPubMedCentralCrossRefGoogle Scholar
  10. Clark RW, Brown WS, Stechert R, Zamudio KR (2010) Roads, interrupted dispersal, and genetic diversity in timber rattlesnakes. Conserv Biol 24:1059–1069. doi:10.1111/j.1523-1739.2009.01439.x PubMedCrossRefGoogle Scholar
  11. Collinge SK, Forman RTT (1998) A conceptual model of land conversion processes: predictions and evidence from a microlandscape experiment with grassland insects. Oikos 82:66–84CrossRefGoogle Scholar
  12. Coulon A, Cosson JF, Angibault JM et al (2004) Landscape connectivity influences gene flow in a roe deer population inhabiting a fragmented landscape: an individual-based approach. Mol Ecol 13:2841–2850. doi:10.1111/j.1365-294X.2004.02253.x PubMedCrossRefGoogle Scholar
  13. Danin A (1999) Desert rocks as plant refugia in the Near East. Bot Rev 65:93–170CrossRefGoogle Scholar
  14. Davidson A, Carmel Y, Bar-David S (2013) Characterizing wild ass pathways using a non-invasive approach: applying least-cost path modelling to guide field surveys and a model selection analysis. Landsc Ecol 28:1465–1478Google Scholar
  15. Dupanloup I, Schneider S, Excoffier L (2002) A simulated annealing approach to define the genetic structure of populations. Mol Ecol 11:2571–2581PubMedCrossRefGoogle Scholar
  16. Edmonds CA, Lillie AS, Cavalli-Sforza LL (2004) Mutations arising in the wave front of an expanding population. Proc Natl Acad Sci USA 101:975–979. doi:10.1073/pnas.0308064100 PubMedPubMedCentralCrossRefGoogle Scholar
  17. Epps CW, Palsbøll PJ, Wehausen JD et al (2005) Highways block gene flow and cause a rapid decline in genetic diversity of desert bighorn sheep. Ecol Lett 8:1029–1038CrossRefGoogle Scholar
  18. Esri (2011) ArcGIS Desktop: Release 10. Redlands CAGoogle Scholar
  19. Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567. doi:10.1111/j.1755-0998.2010.02847.x PubMedCrossRefGoogle Scholar
  20. Excoffier L, Ray N (2008) Surfing during population expansions promotes genetic revolutions and structuration. Trends Ecol Evol 23:347–351. doi:10.1016/j.tree.2008.04.004 PubMedCrossRefGoogle Scholar
  21. Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to Human Mitochondrial DNA Restriction Data. Genetics 131:479–491PubMedPubMedCentralGoogle Scholar
  22. Excoffier L, Foll M, Petit RJ (2009) Genetic Consequences of Range Expansions. Annu Rev Ecol Evol Syst 40:481–501. doi:10.1146/annurev.ecolsys.39.110707.173414 CrossRefGoogle Scholar
  23. Grativol AD, Ballou JD, Fleischer RC (2001) Microsatellite variation within and among recently fragmented populations of the golden lion tamarin (Leontopithecus rosalia). Conserv Genet 2:1–9CrossRefGoogle Scholar
  24. Groves CP (1986) The taxonomy, distribution and adaptations of recent equids. Equids Anc World 1:11–65Google Scholar
  25. Guardiola M, Frotscher J, Uriz MJ (2011) Genetic structure and differentiation at a short-time scale of the introduced calcarean sponge Paraleucilla magna to the western Mediterranean. Hydrobiologia 687:71–84. doi:10.1007/s10750-011-0948-1 CrossRefGoogle Scholar
  26. Gustafson EJ, Parker GR (1992) Relationships between landcover proportion and indices of landscape spatial pattern. Landsc Ecol 7:101–110. doi:10.1007/BF02418941 CrossRefGoogle Scholar
  27. Hedrick PW (2011) Genetics of populations, 4th edition. Jones & Bartlett Learning, BostonGoogle Scholar
  28. Hofer T, Ray N, Wegmann D, Excoffier L (2009) Large allele frequency differences between human continental groups are more likely to have occurred by drift during range expansions than by selection. Ann Hum Genet 73:95–108. doi:10.1111/j.1469-1809.2008.00489.x PubMedCrossRefGoogle Scholar
  29. Ibrahim KM, Nichols RA, Hewitt GM (1996) Spatial patterns of genetic variation generated by different forms of dispersal during range expansion. Heredity (Edinb) 77:282–291CrossRefGoogle Scholar
  30. IUCN SSC (2001) IUCN Red List categories and criteria: version 3.1. Prepared by IUCN Species Survival CommunicationGoogle Scholar
  31. Keller I, Largiadèr CR (2003) Recent habitat fragmentation caused by major roads leads to reduction of gene flow and loss of genetic variability in ground beetles. Proc R Soc B Biol Sci 270:417–423CrossRefGoogle Scholar
  32. Klopfstein S, Currat M, Excoffier L (2006) The fate of mutations surfing on the wave of a range expansion. Mol Biol Evol 23:482–490. doi:10.1093/molbev/msj057 PubMedCrossRefGoogle Scholar
  33. Kohn MH, York EC, Kamradt DA et al (1999) Estimating population size by genotyping faeces. Proc Biol Sci 266:657–663. doi:10.1098/rspb.1999.0686 PubMedPubMedCentralCrossRefGoogle Scholar
  34. Landguth EL, Cushman SA, Schwartz MK (2010) Quantifying the lag time to detect barriers in landscape genetics. Mol Ecol 19:4179–4191. doi:10.1111/j.1365-294X.2010.04808.x PubMedCrossRefGoogle Scholar
  35. Latch EK, Scognamillo DG, Fike JA et al (2008) Deciphering ecological barriers to North American River Otter (Lontra canadensis) gene flow in the Louisiana landscape. J Hered 99:265PubMedCrossRefGoogle Scholar
  36. Lowe WH, McPeek MA, Likens GE, Cosentino BJ (2008) Linking movement behaviour to dispersal and divergence in plethodontid salamanders. Mol Ecol 17:4459–4469. doi:10.1111/j.1365-294X.2008.03928.x PubMedCrossRefGoogle Scholar
  37. Manel S, Schwartz MK, Luikart G, Taberlet P (2003) Landscape genetics: combining landscape ecology and population genetics. Trends Ecol Evol 18:189–197CrossRefGoogle Scholar
  38. Manel S, Poncet BN, Legendre P et al (2010) Common factors drive adaptive genetic variation at different spatial scales in Arabis alpina. Mol Ecol 19:3824–3835. doi:10.1111/j.1365-294X.2010.04716.x PubMedCrossRefGoogle Scholar
  39. Manni F, Gue E, Guérard E, Heyer E (2004) Geographic patterns of (genetic, morphologic, linguistic) variation: how barriers can be detected by using Monmonier’s algorithm. Hum Biol 76:173–190PubMedCrossRefGoogle Scholar
  40. McGarigal K, Cushman SA, Neel MC, Ene E (2012) FRAGSTATS v4: Spatial Pattern Analysis Program for Categorical and Continuous Maps. Univ. Massachusettes, Amherst, MA. URL
  41. Merilä J, Sheldon BC, Kruuk LE (2001) Explaining stasis: microevolutionary studies in natural populations. Genetica 112–113:199–222PubMedCrossRefGoogle Scholar
  42. Michod R (1982) The theory of kin selection. Annu Rev Ecol Syst 13:23–55CrossRefGoogle Scholar
  43. Miller B, Ralls K, Reading RP et al (1999) Biological and technical considerations of carnivore translocation: a review. Anim Conserv 2:59–68. doi:10.1111/j.1469-1795.1999.tb00049.x CrossRefGoogle Scholar
  44. Monmonier MS (1973) Maximum-difference barriers: an alternative numerical regionalization method. Geogr Anal 5:245–261CrossRefGoogle Scholar
  45. Murphy MA, Dezzani R, Pilliod DS, Storfer A (2010) Landscape genetics of high mountain frog metapopulations. Mol Ecol 19:3634–3649. doi:10.1111/j.1365-294X.2010.04723.x PubMedCrossRefGoogle Scholar
  46. Nei M (1975) Molecular population genetics and evolution. North-Holland Publishing Company, AmsterdamGoogle Scholar
  47. Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583–590PubMedPubMedCentralGoogle Scholar
  48. Nei M (1987) Molecular evolutionary genetics. Columbia University Press, ColumbiaGoogle Scholar
  49. Nei M, Tajima F (1981) Genetic drift and estimation of effective population size. Genetics 98:625–640PubMedPubMedCentralGoogle Scholar
  50. Neuwald JL, Templeton AR (2013) Genetic restoration in the eastern collared lizard under prescribed woodland burning. Mol Ecol 22:3666–3679. doi:10.1111/mec.12306 PubMedCrossRefGoogle Scholar
  51. Nezer O (2011) The use of predicted distribution model of the Asiatic wild ass (Equus hemionus) for sustainable management of the Negev and the Arava. Technion, Institute of TechnologyGoogle Scholar
  52. Peakall R, Smouse PE (2010) GenAlEx 6.41: Genetic analysis in Excel. Population genetic software for teaching and research. The Australian National University website (Canberra, Australia)Google Scholar
  53. Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259. doi:10.1016/j.ecolmodel.2005.03.026 CrossRefGoogle Scholar
  54. Ralls K, Ballou JD, Templeton A (1988) Estimates of lethal equivalents and the cost of inbreeding in mammals. Conserv Biol 2:185–193. doi:10.1111/j.1523-1739.1988.tb00169.x CrossRefGoogle Scholar
  55. Ramakrishnan AP, Musial T, Cruzan MB (2010) Shifting dispersal modes at an expanding species’ range margin. Mol Ecol 19:1134–1146. doi:10.1111/j.1365-294X.2010.04543.x PubMedCrossRefGoogle Scholar
  56. Renan S, Speyer E, Shahar N et al (2012) A factorial design experiment as a pilot study for noninvasive genetic sampling. Mol Ecol Resour 12:1040–1047. doi:10.1111/j.1755-0998.2012.03170.x PubMedCrossRefGoogle Scholar
  57. Ricketts TH (2001) The matrix matters: effective isolation in fragmented landscapes. Am Nat 158:87–99PubMedCrossRefGoogle Scholar
  58. Rozen S, Skaletsky H et al (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132:365–386PubMedGoogle Scholar
  59. Saltz D, Rubenstein DI (1995) Population-dynamics of a reintroduced Asiatic wild ass (Equus Hemionus) herd. Ecol Appl 5:327–335CrossRefGoogle Scholar
  60. Saltz D, Rowen M, Rubenstein DI (2000) The effect of space-use patterns of reintroduced Asiatic wild ass on effective population size. Conserv Biol 14:1852–1861CrossRefGoogle Scholar
  61. Santini A, Lucchini V, Fabbri E, Randi E (2007) Ageing and environmental factors affect PCR success in wolf (Canis lupus) excremental DNA samples. Mol Ecol Notes 7:955–961CrossRefGoogle Scholar
  62. Sarrazin F, Barbault R (1996) Reintroduction: challenges and lessons for basic ecology. Trends Ecol Evol 11:474–478PubMedCrossRefGoogle Scholar
  63. Schumaker NH (1996) Using landscape indices to predict habitat connectivity. Ecology 77:1210–1225CrossRefGoogle Scholar
  64. Seddon PJ, Armstrong DP, Maloney RF (2007) Developing the science of reintroduction biology. Conserv Biol 21:303–312. doi:10.1111/j.1523-1739.2006.00627.x PubMedCrossRefGoogle Scholar
  65. Shigesada N, Kawasaki K (1997) Biological invasions: theory and practice. Oxford University Press, New YorkGoogle Scholar
  66. Short KH, Petren K (2011) Fine-scale genetic structure arises during range expansion of an invasive gecko. PLoS One 6:e26258PubMedPubMedCentralCrossRefGoogle Scholar
  67. Sinai Y (1994) A program for selecting individuals from a breeding core for reintroduction Equus heminous in Hai-Bar Yotvata. The Hebrew UniversityGoogle Scholar
  68. Spear SF, Storfer A (2008) Landscape genetic structure of coastal tailed frogs (Ascaphus truei) in protected vs. managed forests. Mol Ecol 17:4642–4656. doi:10.1111/j.1365-294X.2008.03952.x PubMedCrossRefGoogle Scholar
  69. Speyer E (2012) Preservation of genetic diversity in a reintroduced population: the Asiatic wild ass in the Negev. Ben-Gurion University of the NegevGoogle Scholar
  70. Stern E, Gradus Y, Meir A, et al. (1986) Atlas of the Negev. Department of Geography, Ben-Gurion University of the NegevGoogle Scholar
  71. Storfer A, Murphy MA, Spear SF et al (2010) Landscape genetics: where are we now? Mol Ecol 19:3496–3514. doi:10.1111/j.1365-294X.2010.04691.x PubMedCrossRefGoogle Scholar
  72. Storz J (1999) Genetic consequences of mammalian social structure. J Mammal 80:553–569CrossRefGoogle Scholar
  73. Sugg D, Chesser R (1996) Population genetics meets behavioral ecology. Trends Ecol Evol 11:338–342PubMedCrossRefGoogle Scholar
  74. Tajima F (1983) Evolutionary relationship of DNA sequences in finite populations. Genetics 105:437–460PubMedPubMedCentralGoogle Scholar
  75. Tamura K, Peterson D, Peterson N et al (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739. doi:10.1093/molbev/msr121 PubMedPubMedCentralCrossRefGoogle Scholar
  76. Templeton AR (1998) Nested clade analyses of phylogeographic data: testing hypotheses about gene flow and population history. Mol Ecol 7:381–397PubMedCrossRefGoogle Scholar
  77. Templeton AR (2008) The reality and importance of founder speciation in evolution. BioEssays 30:470–479. doi:10.1002/bies.20745 PubMedCrossRefGoogle Scholar
  78. Templeton AR, Robertson RJ, Brisson J, Strasburg J (2001) Disrupting evolutionary processes: the effect of habitat fragmentation on collared lizards in the Missouri Ozarks. Proc Natl Acad Sci USA 98:5426–5432. doi:10.1073/pnas.091093098 PubMedPubMedCentralCrossRefGoogle Scholar
  79. The MathWorks Inc. (2010) version 7.10.0 (R2010a). The MathWorks Inc., Natick, MassachusettsGoogle Scholar
  80. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680PubMedPubMedCentralCrossRefGoogle Scholar
  81. Tischendorf L, Fahrig L (2000) On the usage and measurement of landscape connectivity. Oikos 90:7–19. doi:10.1034/j.1600-0706.2000.900102.x CrossRefGoogle Scholar
  82. Travis JMJ, Muenkemueller T, Burton OJ (2010) Mutation surfing and the evolution of dispersal during range expansions. J Evol Biol 23:2656–2667. doi:10.1111/j.1420-9101.2010.02123.x PubMedCrossRefGoogle Scholar
  83. Vilà C, Leonard JA, Gotherstrom A et al (2001) Widespread origins of domestic horse lineages. Science 291:474–477PubMedCrossRefGoogle Scholar
  84. Vynne C, Baker MR, Breuer ZK, Wasser SK (2012) Factors influencing degradation of DNA and hormones in maned wolf scat. Anim Conserv 15:184–194CrossRefGoogle Scholar
  85. Wang J, Whitlock MC (2003) Estimating effective population size and migration rates from genetic samples over space and time. Genetics 163:429–446PubMedPubMedCentralGoogle Scholar
  86. Wegmann D, Currat M, Excoffier L (2006) Molecular diversity after a range expansion in heterogeneous environments. Genetics 174:2009–2020. doi:10.1534/genetics.106.062851 PubMedPubMedCentralCrossRefGoogle Scholar
  87. Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution (N Y) 38:1358–1370. doi:10.2307/2408641 Google Scholar
  88. White TA, Perkins SE, Heckel G, Searle JB (2013) Adaptive evolution during an ongoing range expansion: the invasive bank vole (Myodes glareolus) in Ireland. Mol Ecol 22:2971–2985. doi:10.1111/mec.12343 PubMedCrossRefGoogle Scholar
  89. With KA, Cadaret SJ, Davis C (1999) Movement responses to patch structure in experimental fractal landscapes. Ecology 80:1340–1353CrossRefGoogle Scholar
  90. Wright S (1949) The genetical structure of populations. Ann Eugen 15:323–354. doi:10.1111/j.1469-1809.1949.tb02451.x CrossRefGoogle Scholar
  91. Wright S (1965) The interpretation of population structure by F-statistics with special regard to systems of mating. Evolution (N Y) 19:395–420Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Tomer Gueta
    • 1
  • Alan R. Templeton
    • 2
    • 3
  • Shirli Bar-David
    • 1
  1. 1.Mitrani Department of Desert Ecology, Blaustein Institutes for Desert ResearchBen-Gurion University of the NegevMidreshet Ben-GurionIsrael
  2. 2.Department of BiologyWashington UniversitySt. LouisUSA
  3. 3.Department of Evolutionary and Environmental EcologyUniversity of HaifaHaifaIsrael

Personalised recommendations