Advertisement

Conservation Genetics

, Volume 15, Issue 5, pp 1063–1071 | Cite as

Genetic introgression of cultured rainbow trout in the Mexican native trout complex

  • Marco A. Escalante
  • Francisco J. García-De-León
  • Casey B. Dillman
  • Anabelia de los Santos Camarillo
  • Anna George
  • Irene de los A. Barriga-Sosa
  • Arturo Ruiz-Luna
  • Richard L. Mayden
  • Stéphanie Manel
Research Article

Abstract

The Mexican native trout complex is the group of salmonids that naturally has the southernmost distribution in the world. Despite its unique status and evidence of more than 13 distinct lineages, there are only two described species (Oncorhynchus mykiss nelsoni and O. chrysogaster). These fishes are threatened by environmental and anthropogenic factors, most notably the introduction of the exotic species O. mykiss (rainbow trout) for aquaculture. Here we applied population genetics analysis in 1,017 wild and cultured trout to understand the extent of genetic introgression of rainbow trout in Mexican native trout. Present results indicate a high degree of introgression and genetic admixture among introduced rainbow trout and some populations of Mexican native trout, exposing them to loss of genetic diversity. Thus, introduction of exotic trout for aquaculture purposes must be strictly regulated or avoided and we advise the use of native trout for aquaculture.

Keywords

Genetic introgression Genetic hybridization Mexican trout Rainbow trout Northwestern Mexico Sierra Madre Occidental 

Notes

Acknowledgments

This research was supported by SAGARPA-CONACYT (Ref. 12147) and PDCBS (Ref. 14707.03), the U.S. National Science Foundation (Ref. DEB-0240184, DEB-0817027) and SAGARPA-FIRCO 2012 (Ref. RGA-BCS-12-000003). Special thanks to the binational group Truchas Mexicanas, especially Joseph R. Tomelleri, Bernard R. Kuhajda, Hector Espinosa, David A. Neely, James E. Brooks, David L. Propst, Gorgonio Ruiz-Campos, Dean Hendrickson and Lloyd Findley, for their extensive assistance in collecting and their collaborative efforts. Marco A. Escalante was the recipient of CONACYT fellowships to obtain his MsC degree in the CIAD Postgraduate Program and now during his PhD studies in AMAP Lab, under a project funded by CONACYT (Ref. CB-2010-01-152893). Collection permits were issued by DGVS/SEMARNAT (FAUT 0117, issued to H. Espinosa Pérez) and Fishing promotion licenses by SAGARPA (DGOPA 21205/0765; 250406/1606; 030506/1677; 240800 213-03/2366; 300801-613-03/1607).

References

  1. Angers B, Bernatchez L, Angers A, Desgroseillers L (1995) Specific microsatellite loci for brook char reveal strong population subdivision on a microgeographic scale. J Fish Biol 47:177–185CrossRefGoogle Scholar
  2. Banks MA, Blouin MS, Baldwin BA et al (1999) Isolation and inheritance of novel microsatellite in Chinook salmon (Onchorhynchus tschawytscha). J Hered 90:281–288CrossRefGoogle Scholar
  3. Banks MA, Rashbrook VK, Calavetta MJ et al (2000) Analysis of microsatellite DNA resolves genetic structure and diversity of chinook salmon (Oncorhynchus tshawytscha) in California’s Central Valley. Can J Fish Aquat Sci 57:915–927Google Scholar
  4. Banks SC, Geoffrey JC, Annabel LS et al (2013) How does ecological disturbance influence genetic diversity? Trends Ecol Evol 28(11):670–679. doi: 10.1016/j.tree.2013.08.005 PubMedCrossRefGoogle Scholar
  5. Bartley DM, Gall GAE (1990) Genetic structure and gene flow in Chinook salmon populations of California. Trans Am Fish Soc 119:55–71CrossRefGoogle Scholar
  6. Behnke RJ (1992) Native trout of western North America American Fisheries Society Monograph 6. American Fisheries Society, BethesdaGoogle Scholar
  7. Camarena-Rosales F, Ruiz-Campos G, De La Rosa-Vélez J et al (2008) Mitochondrial haplotype variation in wild trout populations (Teleostei: Salmonidae) from northwestern Mexico. Rev Fish Biol Fisher 18:33–45CrossRefGoogle Scholar
  8. Campton DE (1987) Natural hybridization and introgresision in fishes: methods of detection and genetic interpretations. In: Ryman N, Utter F (eds) Population genetics and fishery management. University of Washington Press, Seattle, pp 161–192Google Scholar
  9. Campton DE (1995) Genetic effects of hatchery fish on wild populations of Pacific salmon and steelhead: what do we really know? Trans Am Fish Soc 15:337–353Google Scholar
  10. Caudron A, Champigneulle A, Guyomard R et al (2011) Assessment of three strategies practiced by fishery managers for restoring native brown trout (Salmo trutta) populations in Northern French Alpine Streams. Ecol Freshw Fish 20:478–491CrossRefGoogle Scholar
  11. Cavalli-Sforza LL, Edwards AWF (1967) Phylogenetic analysis models and estimation procedures. Evolution 32:550–570CrossRefGoogle Scholar
  12. Chen C, Durand E, Forbes F et al (2007) Bayesian clustering algorithms ascertaining spatial population structure: a new computer program and a comparison study. Mol Ecol 7:747–756CrossRefGoogle Scholar
  13. Contreras-Balderas S, Escalante-Cavazos MA (1984) Distribution and known impacts of exotic fishes in Mexico. In: Courtenay WR, Stauffer JR (eds) Distribution, biology and management of exotic fishes. John Hopkins University Press, Baltimore, pp 102–130Google Scholar
  14. Cordes JF, Stephens M, Blumberg MA et al (2006) Identifying introgressive hybridization in native populations of California Golden Trout based on molecular markers. Trans Am Fish Soc 135:110–128CrossRefGoogle Scholar
  15. Corsi MP, Eby LA, Barfoot CA (2013) Hybridization with rainbow trout alters life history traits of native west slope cutthroat trout. Can J Fish Aquat Sci 70(6):895–904CrossRefGoogle Scholar
  16. Dionne M, Caron F, Dodson JJ et al (2008) Landscape genetics and hierarchical genetic structure in Atlantic salmon: the interaction of gene flow and local adaptation. Mol Ecol 17:2382–2396PubMedCrossRefGoogle Scholar
  17. Fausch KD (2007) Introduction, establishment and effects of non-native salmonids: considering the risk of rainbow trout invasion in the United Kingdom. J Fish Biol 71:1–32CrossRefGoogle Scholar
  18. François O, Durand E (2010) Spatially explicit Bayesian clustering models in population genetics. Mol Ecol 10:773–784CrossRefGoogle Scholar
  19. François O, Ancelet S, Guillot G (2006) Bayesian clustering using hidden Markov random fields in spatial population genetics. Genetics 174:805–816PubMedCrossRefPubMedCentralGoogle Scholar
  20. Fuller PL, Nico LG, Williams JD (1999) Non indigenous fishes introduced into inland water of the United States. American Fisheries Society, BethesdaGoogle Scholar
  21. Gompert Z, Buerkle CA (2009) A powerful regression-based method for admixture mapping of isolation across the genome of hybrids. Mol Ecol 18:1207–1224PubMedCrossRefGoogle Scholar
  22. Gompert Z, Buerkle CA (2010) Introgress: a software package for mapping components of isolation in hybrids. Mol Ecol Resour 10:378–384PubMedCrossRefGoogle Scholar
  23. Goudet J (1995) FSTAT (Version 1.2): a Computer Program to Calculate F-Statistics. J Hered 86(6):485–486Google Scholar
  24. Gunnell K, Tada MK, Hawthorne FA et al (2008) Geographic patterns of introgressive hybridization between native Yellowstone cutthroat trout (Oncorhynchus clarki bouvieri) and introduced rainbow trout (O. mykiss) in the South Fork of the Snake River watershed, Idaho. Conserv Genet 9:49–64CrossRefGoogle Scholar
  25. Heggberget TG, Johnsen BO, Hindar K et al (1993) Interactions between wild and cultured Atlantic salmon: a review of the Norwegian experience. Fish Res 18:123–146CrossRefGoogle Scholar
  26. Hendrickson DA, Espinosa-Pérez H, Findley LT (2002) Mexican native trouts: a review a their history and current systematic and status. Rev Fish Biol Fisher 12(2):273–316CrossRefGoogle Scholar
  27. Hendrickson DA, Nelly DA, Mayden RL et al (2006) Conservation of Mexican native trout and the discovery, status. Protection and recovery of the Conchos trout, the first native. In: Lozano-Vilano ML, Contreras-Balderas AJ (eds) Studies of North American desert fishes in honor of EP (Phil) Pister, Conservationist. Universidad Autónoma de Nuevo León, Monterrey, pp 162–201Google Scholar
  28. Hillis DM, Moritz C, Mable BK (1996) Molecular Sistematics. Sinauer, MassachusettsGoogle Scholar
  29. Hindar K, Ryman N, Utter F (1991) Genetic effects of cultured fish on natural fish populations. Can J Fish Aquat Sci 48:945–957CrossRefGoogle Scholar
  30. Hitt NP, Frissell CA, Muhlfeld CC et al (2003) Spread of hybridization between native west slope cutthroat trout, Oncorhynchus clarki lewisi, and nonnative rainbow trout Oncorhynchus mykiss. Can J Fish Aquat Sci 60:1440–1451CrossRefGoogle Scholar
  31. Krueger CC, May B (1991) Ecological and genetic effects of salmonid introductions in North America. Can J Fish Aquat Sci 48:66–77CrossRefGoogle Scholar
  32. Krueger CC, Menzel BW (1979) Effects of stocking on genetics of wild brook trout populations. Trans Am Fish Soc 108:277–287CrossRefGoogle Scholar
  33. Langella O (1999) POPULATIONS, p. Population genetic softwareGoogle Scholar
  34. Lowe S, Browne M, Boudjelas S, et al (2000) 100 de las especies exóticas invasoras más dañinas del mundo. Una selección del Global Invasive Species Database. Grupo Especialista de Especies Invasoras (GEEI) UICN 1-12Google Scholar
  35. Marie AD, Bernatchez L, Garant D (2012) Environmental factors correlate with hybridization in stocked brook charr (Salvelinus fontinalis). Can J Fish Aquat Sci 69:884–893CrossRefGoogle Scholar
  36. Mayden RL, Dillman CB, Espinosa-Pérez H, et al (2010) Evolution and diversity of trout species in the Sierra Madre Occidental of Mexico. In: Proceedings of the Wild Trout X, West Yellowstone, Montana, pp 134–144. www.wildtroutsymposium.com. Accessed 25 Nov 2013
  37. McConnell SK, O’Reilly P, Hamilton L et al (1995) Polymorphic microsatellite loci from Atlantic salmo (Salmo salar): genetic differentiation of North America and European populations. Can J Fish Aquat Sci 52:1863–1872CrossRefGoogle Scholar
  38. McGinnity P, Prodohl P, Ferguson A et al (2003) Fitness reduction and potential extinction of wild population of Atlantic salmon, Salmo salar as a result of interactions with escaped farm salmon. Proc Biol Soc 270(1532):2443–2445CrossRefGoogle Scholar
  39. Meeuwig MH, Guy CS, Kalinowsky ST et al (2010) Landscape influences on genetic differentiation among bull trout populations in a stream-lake network. Mol Ecol 19:3620–3633PubMedCrossRefGoogle Scholar
  40. Morris DB, Richard KR, Wright JM (1996) Microsatellites from rainbow trout (Oncorhynchus mykiss) and their use for genetic study of salmonids. Can J Fish Aquat Sci 53:120–126CrossRefGoogle Scholar
  41. Naish KA, Taylor JE, Phillip S et al (2008) An evaluation of the effects of conservation and fishery enhancement hatcheries on wild populations of salmon. Adv Mar Biol 53:61–62CrossRefGoogle Scholar
  42. Narum SR, Zendt JS, Graves D et al (2010) Influence of landscape on resident and anadromous life history types of Oncorhynchus mykiss. Can J Fish Aquat Sci 65:1013–1023CrossRefGoogle Scholar
  43. Nei M, Maruyama T, Chakraborty R (1974) The bottleneck effect and genetic variability in populations. Evolution 29:1–10CrossRefGoogle Scholar
  44. Nielsen JL (1997) Molecular genetics and evolutionary status of trout of the Sierra Madre. In: Greeswell RE, Dwyer P, Hamre RH (eds) Wild Trout VI: putting the Native Back in Wild Trout. Montana State University, Montana, pp 103–109Google Scholar
  45. Nielsen JL, Sage GK (2001) Microsatellite analyses of the trout of northwest Mexico. Genetica 111:269–278PubMedCrossRefGoogle Scholar
  46. Nielsen JL, Fountain MC, Campoy-Favela J et al (1998) Oncorhynchus at the southern extent of their range: a study of mtDNA control-region sequence with special reference to an undescribed subspecies of O. mykiss from Mexico. Environ Biol Fish 51:7–13CrossRefGoogle Scholar
  47. Nielsen JL, Crow KD, Fountain MC (1999) Microsatellite diversity and conservation of a relic trout: McCloud River redband trout. Mol Ecol 8:129–142CrossRefGoogle Scholar
  48. O’Connell M, Danzmann RG, Cornuet JM et al (1997) Differentiation of rainbow trout (Oncorhynchus mykiss) populations in Lake Ontario and the evaluation of the stepwise mutation and infinite alleles mutation models using microsatellite variability. Can J Fish Aquat Sci 54:1391–1399CrossRefGoogle Scholar
  49. Page RDM (1996) TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358PubMedGoogle Scholar
  50. Peakall R, Smouse PE (2006) Genalex 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295CrossRefGoogle Scholar
  51. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedPubMedCentralGoogle Scholar
  52. Rinne JN (1990) Status, distribution and conservation of two rare southwestern (USA) salmonids, the Apache trout, Oncorhynchus apache Miller and the Gila trout, O. gilae Miller. J Fish Biol 37:189–191CrossRefGoogle Scholar
  53. Ruiz-Campos G, Camarena-Rosales F, Varela-Romero A et al (2003) Morphometric variation of wild trout populations from northwestern Mexico (Pisces: Salmonidae). Rev Fish Biol Fisher 13:91–110CrossRefGoogle Scholar
  54. Safner T, Miaud C, Gaggiotti O et al (2011) Combining demography and genetic analysis to assess the population structure of an amphibian in a human-dominated mandscape. Conserv Genet 12:161–173CrossRefGoogle Scholar
  55. Scribner KT, Gust JR, Fields RL (1996) Isolation and characterization of novel salmon microsatellite loci: cross-species amplification and population genetic applications. Can J Fish Aquat Sci 53:685–693CrossRefGoogle Scholar
  56. Weigel DA, Peterson JT, Spruell P (2003) Introgressive hybridization between native cutthroat trout and introduced rainbow trout. Ecol Appl 13:38–50CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Marco A. Escalante
    • 1
    • 2
  • Francisco J. García-De-León
    • 3
  • Casey B. Dillman
    • 4
  • Anabelia de los Santos Camarillo
    • 3
  • Anna George
    • 5
  • Irene de los A. Barriga-Sosa
    • 6
  • Arturo Ruiz-Luna
    • 2
  • Richard L. Mayden
    • 7
  • Stéphanie Manel
    • 1
    • 8
  1. 1.UMR Botanique et BioinforMatique de l’Architecture des PlantesBd de la Lironde TA A51/PS2Montpellier Cedex 5France
  2. 2.Laboratorio de Manejo AmbientalCentro de Investigación en Alimentación y Desarrollo ACMazatlánMexico
  3. 3.Laboratorio de Genética para la Conservación, Centro de Investigaciones Biológicas del NoroesteInstituto Politécnico NacionalLa PazMexico
  4. 4.Virginia Institute of Marine ScienceGloucester PointUSA
  5. 5.Tennessee Aquarium Conservation InstituteChattanoogaUSA
  6. 6.Laboratorio de Genética y Biología Molecular-PExPA, Departamento de HidrobiologíaUniversidad Autónoma Metropolitana IztapalapaIztapalapaMexico
  7. 7.Department of BiologySaint Louis UniversitySt. LouisUSA
  8. 8.Laboratoire Population Environnement DéveloppementUniversité Aix-MarseilleMarseilleFrance

Personalised recommendations