Advertisement

Conservation Genetics

, Volume 15, Issue 4, pp 933–951 | Cite as

Population structure, inbreeding and local adaptation within an endangered riverine specialist: the nase (Chondrostoma nasus)

  • Alan G. Hudson
  • Pascal Vonlanthen
  • Ole Seehausen
Research Article

Abstract

Chondrostoma nasus is a cyprinid fish with highly specialized, ecologically and geographically distinct, ontogenetic trophic niches. Nase population numbers across their Swiss range have shown massive declines and many localized extinctions. In this study, we integrate genetic data (AFLP, microsatellite, mtDNA sequence) with phenotypic and demographic analyses to survey patterns of neutral and adaptive genetic diversity in all extant (and one extinct) Swiss nase populations, with the aim to delineate intraspecific conservation units (CUs) and to inform future population management strategies. We discovered two major genetically and geographically distinct population groupings. The first population grouping comprises nase inhabiting rivers flowing into Lake Constance; the second comprises nase populations from Rhine drainages below Lake Constance. Within these clusters there is generally limited genetic differentiation among populations. Genomic outlier scans based on 256 to 377 polymorphic AFLP loci revealed little evidence of local adaptation both within and among population clusters, with the exception of one candidate locus identified in scans involving the low genetic diversity Schanzengraben population. However, significant phenotypic differentiation in body shape between certain populations suggests a need for more intensive future studies of local adaptation. Our data strongly suggests that the two major population groups should be treated as distinct CUs, with any supplemental stocking and reintroductions sourced only from within the range of the CU concerned.

Keywords

Chondrostoma nasus Conservation genomics Local adaptation Population genomics Outlier scans Adaptive potential Conservation units (CUs) 

Notes

Acknowledgments

We kindly acknowledge for providing samples: Dr. Arthur Kirchhofer for historical Sense samples, Dr. Wolfgang Mark for Danubian samples, Franck Bonell for Dornbirner Ach samples, Dr. Caroline Costedoat for P. toxosoma samples. We thank Dr. Michel Dedual, Franck Bonell for performing the aging on scales. We thank Salome Mwaiko, Isabel Magalhaes, Andreas Taverna, Guy Périat, Brigitte Germann, Denise Weibel, Sabina Käppeli, Bänz Lundsgaard-Hansen, Denis Roy, Kay Lucek, Andreas Hertig, Rachel Tucker, Markus Grünenfelder, Martin Huber-Gysi, Daniel Zopfi, Fredi Fehr, Michael Kugler for their assistance. We thank WWF Switzerland for making this study possible. We acknowledge financial support by the Federal Office for the Environment (FOEN).

Supplementary material

10592_2014_590_MOESM1_ESM.pdf (3.5 mb)
Supplementary material 1 (PDF 3,574 kb)

References

  1. Adamik Z, Obrdlik P (1977) Food of important cyprinid species in the warmed barb-zone of the Oslava River. Folia Zool 25:171–182Google Scholar
  2. Allendorf FW, Hohenlohe PA, Luikart G (2010) Genomics and the future of conservation genetics. Nat Rev Genet 11:697–709PubMedCrossRefGoogle Scholar
  3. Ashley MV, Willson MF, Pergams ORW, O’Dowd DJ, Gende SM, Brown JS (2003) Evolutionarily enlightened management. Biol Conserv 111:115–123CrossRefGoogle Scholar
  4. Barluenga M, Sanetra M, Meyer M (2006) Genetic admixture of burbot (Teleostei: lota lota) in Lake Constance from two European glacial refugia. Mol Ecol 15:3583–3600PubMedCrossRefGoogle Scholar
  5. Beaumont MA, Balding DJ (2004) Identifying adaptive genetic divergence among populations from genome scans. Mol Ecol 13:969–980PubMedCrossRefGoogle Scholar
  6. Behrmann-Godel J, Gerlach G, Eckmann R (2004) Postglacial colonization shows evidence for sympatric population splitting of Eurasian perch (Perca fluviatilis L.) in Lake Constance. Mol Ecol 13:491–497PubMedCrossRefGoogle Scholar
  7. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc 57:289–300Google Scholar
  8. Bernatchez L (2001) The evolutionary history of brown trout (Salmo trutta L.) inferred from phylogeographic, nested clade, and mismatch analyses of mitochondrial DNA variation. Evolution 55:351–379PubMedCrossRefGoogle Scholar
  9. Bernatchez L, Wilson CC (1998) Comparative phylogeography of Nearctic and Palearctic fishes. Mol Ecol 7:431–452CrossRefGoogle Scholar
  10. Bonin A, Bellemain E, Eidesen PB, Pompanon F, Brochmann C, Taberlet P (2004) How to track and assess genotyping errors in population genetics studies. Mol Ecol 13:3261–3273PubMedCrossRefGoogle Scholar
  11. Bonin A, Taberlet P, Miaud C, Pompanon F (2006) Explorative genome scan to detect candidate loci for adaptation along a gradient of altitude in the common frog (Rana temporaria). Mol Biol Evol 23:773–783PubMedCrossRefGoogle Scholar
  12. Bookstein FL (1991) Morphometric tools for landmark data, geometry and biology. Cambridge University Press, CambridgeGoogle Scholar
  13. Bouzat JL (2010) Conservation genetics of population bottlenecks: the role of chance, selection, and history. Conserv Genet 11:463–478CrossRefGoogle Scholar
  14. Britton JR, Pegg J (2011) Ecology of European Barbel Barbus Barbus: implications for river, fishery, and conservation management. Rev Fish Sci 19:321–330CrossRefGoogle Scholar
  15. Brunner PC, Douglas MR, Osinov A, Wilson CC, Bernatchez L (2001) Holarctic phylogeography of arctic charr (Salvelinus alpinus L.) inferred from mitochondrial DNA sequences. Evolution 55:573–586PubMedCrossRefGoogle Scholar
  16. Butlin RK (2010) Population genomics and speciation. Genetica 138:409–418PubMedCrossRefGoogle Scholar
  17. Caravajal-Rodriguez A, de Uña-Alvarez J, Rolan-Alvarez E (2009) A new multitest correction (SGoF) that increases its statistical power when increasing the number of tests. BMC Bioinf 10:209CrossRefGoogle Scholar
  18. Cornuet JM, Luikart G (1997) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2014Google Scholar
  19. Costedoat C, Gilles A (2009) Quaternary pattern of freshwater fishes in Europe: comparative phylogeography and conservation perspective. Open Conserv Biol J 3:36–48CrossRefGoogle Scholar
  20. Crandall KA, Bininda-Emonds ORP, Mace GM, Wayne RK (2000) Considering evolutionary processes in conservation biology. Trends Ecol Evol 15:290–295PubMedCrossRefGoogle Scholar
  21. Dedual M (1990) Biologie et problèmes de dynamique de population du nase (Chondrostoma nasus nasus) dans la petite Sarine. PhD thesis, Université de FribourgGoogle Scholar
  22. Di Rienzo A, Peterson AC, Garza JC, Valdes AM, Slatkin M, Freimer NB (1994) Mutational processes of simple-sequence repeat loci in human populations. Proc Natl Acad Sci USA 91:3166–3170PubMedCentralPubMedCrossRefGoogle Scholar
  23. Durand JD, Persat H, Bouvet Y (1999) Phylogeography and postglacial dispersion of the chub (Leuciscus cephalus) in Europe. Mol Ecol 8:989–997PubMedCrossRefGoogle Scholar
  24. Edmands S (2007) Between a rock and a hard place: evaluating the relative risks of inbreeding and outbreeding for conservation and management. Mol Ecol 16:463–475PubMedCrossRefGoogle Scholar
  25. Englbrecht CC, Freyhof J, Nolte A, Rassmann K, Schliewen U, Tautz D (2000) Phylogeography of the bullhead Cottus gobio (Pisces: Teleostei: Cottidae) suggests a pre-Pleistocene origin of the major central European populations. Mol Ecol 9:709–722PubMedCrossRefGoogle Scholar
  26. Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567PubMedCrossRefGoogle Scholar
  27. Excoffier L, Hofer T, Foll M (2009) Detecting loci under selection in a hierarchically structured population. Hereditary 103:285–298CrossRefGoogle Scholar
  28. Felsenstein J (1989) PHYLIP—phylogeny inference package (Version 3.2). Cladistics 5:164–166Google Scholar
  29. Foll M, Gaggiotti O (2008) A genome-scan method to identify selected loci appropriate for both dominant and codominant markers: a bayesian perspective. Genetics 180:977–993PubMedCentralPubMedCrossRefGoogle Scholar
  30. Frankham R, Ballou JD, Eldridge MDB, Lacy RC, Ralls K, Dudash MR, Fenster CB (2011) Predicting the probability of outbreeding depression. Conserv Biol 25:465–475PubMedCrossRefGoogle Scholar
  31. Fraser DJ, Bernatchez L (2001) Adaptive evolutionary conservation: towards a unified concept for defining conservation units. Mol Ecol 10:2741–2752PubMedCrossRefGoogle Scholar
  32. Funk CF, McKay JK, Hohenlohe PA, Allendorf FW (2012) Harnessing genomics for delineating conservation units. Trends Ecol Evol 27:489–496PubMedCrossRefGoogle Scholar
  33. Gollmann G, Bouvety Y, Karakousis Y, Triantaphyllidis C (1997) Genetic variability in Chondrostoma from Austrian, French and Greek rivers (Teleostei, Cyprinidae). J Zool Syst Evol Res 35:165–169CrossRefGoogle Scholar
  34. Goudet J (1999) PCA-GEN (version 1.2), a computer package which performs principal component analysis (PCA) on gene frequency data. Available from http://www.unil.ch/izea/softwares/pcagen.html
  35. Goudet J (2001) FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3). http://www.unil.ch/izea/softwares/fstat.html
  36. Griffiths G (2006) Pattern and process in the ecological biogeography of European freshwater fish. J Anim Ecol 75:734–751PubMedCrossRefGoogle Scholar
  37. Guo SW, Thompson EA (1992) Performing the exact test of Hardy–Weinberg proportion for multiple alleles. Biometrics 48:361–372PubMedCrossRefGoogle Scholar
  38. Hedrick PW, Fredrickson R (2010) Genetic rescue guidelines with examples from Mexican wolves and Florida panthers. Conserv Genet 11:615–626CrossRefGoogle Scholar
  39. Hewitt GM (2004) Genetic consequences of climatic oscillations in the Quaternary. Phil Trans R Soc B 359:183–195PubMedCentralPubMedCrossRefGoogle Scholar
  40. Holsinger KE, Lewis PO (2007) Hickory, software for analysis of geographic structure in genetic data. http://darwin.eeb.uconn.edu/hickory/hickory.html
  41. Huber Gysi M (2009) Die Bestandssituation der Nase Chondrostoma nasus in der Schweiz 2005–2008. WWF, SwitzerlandGoogle Scholar
  42. Huber M, Kirchhofer A (1998) Radio telemetry as a tool to study habitat use of nase (Chondrostoma nasus L.) in medium-sized rivers. Hydrobiologia 371(372):309–319CrossRefGoogle Scholar
  43. Huber M, Kirchhofer A (2001) Reproductive success of nase (Chondrostoma nasus L.) and its influence on population dynamics. Arch Hydrobiol Suppl 135:307–330Google Scholar
  44. Hudson AG, Vonlanthen P, Seehausen O (2011) Rapid parallel adaptive radiations from a single hybridogenic ancestral population. Proc R Soc B 278:58–66PubMedCentralPubMedCrossRefGoogle Scholar
  45. Hudson AG, Vonlanthen P, Bezault E, Seehausen O (2013) Genomic signatures of relaxed disruptive selection associated with speciation reversal in whitefish. BMC Evol Biol 13:108PubMedCentralPubMedCrossRefGoogle Scholar
  46. Hughes JB, Daily GC, Ehrlich PH (1997) Population diversity: its extent and extinction. Science 278:692–698CrossRefGoogle Scholar
  47. Jones OR, Wang J (2010) COLONY: a program for parentage and sibship inference from multilocus genotype data. Mol Ecol Resour 10:551–555PubMedCrossRefGoogle Scholar
  48. Joost S, Bonin A, Bruford MW, Despres L, Conord C, Erhardt G, Taberlet P (2007) A spatial analysis method (SAM) to detect candidate loci for selection: towards a landscape genomics approach to adaptation. Mol Ecol 16:3955–3969PubMedCrossRefGoogle Scholar
  49. Jump AS, Hunt JM, Martinez-Izquierdo JA, Penuelas J (2006) Natural selection and climate change: temperature-linked spatial and temporal trends in gene frequency in Fagus sylvatica. Mol Ecol 15:3469–3480PubMedCrossRefGoogle Scholar
  50. Junker J, Armin P, Wagner CE, Mwaiko S, Germann B, Seehausen O, Keller I (2012) River fragmentation increases localized population genetic structure and enhances asymmetry of dispersal in bullhead (Cottus gobio). Conserv Genet 13:545–556CrossRefGoogle Scholar
  51. Keller I, Schuler J, Bezault E, Seehausen O (2012) Parallel divergent adaptation along replicated altitudinal gradients in Alpine trout. BMC Evol Biol 12:210Google Scholar
  52. Kirchhofer A (1996) Fish conservation in Switzerland - three case studies. In: Kirchhofer A, Hefti D (eds) Conservation of endangered freshwater fish in Europe. Birkhäuser Verlag, Basel, pp 135–145CrossRefGoogle Scholar
  53. Klingenberg CP (2011) MorphoJ: an integrated software package for geometric morphometrics. Mol Ecol Resour 11:353–357PubMedCrossRefGoogle Scholar
  54. Kohn MH, Murphy WJ, Ostrander EA, Wayne RK (2006) Genomics and conservation genetics. Trends Ecol Evol 21:629–637PubMedCrossRefGoogle Scholar
  55. Kotlík P, Berrebi P (2001) Phylogeography of the barbel (Barbus barbus) assessed by mitochondrial DNA variation. Mol Ecol 10:2177–2185PubMedCrossRefGoogle Scholar
  56. Kottelat M, Freyhof J (2007) Handbook of European freshwater fishes. Kottelat, Cornol and Freyhof, BerlinGoogle Scholar
  57. Kristensen TN, Pedersen KS, Vermeulen CJ, Loeschcke V (2010) Research on inbreeding in the ‘omic’ era. Trends Ecol Evol 25:44–52PubMedCrossRefGoogle Scholar
  58. Le Corre V, Kremer A (2012) The genetic differentiation at quantitative trait loci under local adaptation. Mol Ecol 21:1548–1566PubMedCrossRefGoogle Scholar
  59. Mace GM, Purvis A (2008) Evolutionary biology and practical conservation: bridging a widening gap. Mol Ecol 17:9–19PubMedCrossRefGoogle Scholar
  60. Maier KJ, Zeh M, Ortlepp J, Hefti D (1995) Mitteilungen zur fischerei nr. 53: Verbreitung und Fortpflanzung der in der Schweiz vorkommenden Chondrostoma-Arten. Bundesamt für Umwelt, BernGoogle Scholar
  61. Mäkinen HS, Merilä J (2008) Mitochondrial DNA phylogeography of the three-spined stickleback (Gasterosteus aculeatus) in Europe—evidence for multiple glacial refugia. Mol Phylogenet Evol 46:167–182PubMedCrossRefGoogle Scholar
  62. Mesquita N, Cunha C, Hanfling B, Carvalho GR, Ze-Ze L, Tenreiro R, Coelho MM (2003) Isolation and characterization of polymorphic microsatellite loci in the endangered Portuguese freshwater fish Squalius aradensis (Cyprinidae). Mol Ecol Notes 3:572–574CrossRefGoogle Scholar
  63. Muenzel FM, Sanetra M, Salzburger W, Meyer A (2007) Microsatellites from the vairone Leuciscus souffia (Pisces: Cyprinidae) and their application to closely related species. Mol Ecol Notes 7:1048–1050CrossRefGoogle Scholar
  64. Nesbø CLT, Fossheim L, Vøllestad A, Jakobsen KS (1999) Genetic divergence and phylogeographic relationships among European perch (Perca fluviatilis) populations reflect recent glacial refugia and postglacial colonization. Mol Ecol 8:1387–1404PubMedCrossRefGoogle Scholar
  65. Nosil P, Egan SP, Funk DJ (2008) Heterogeneous genomic differentiation between walking-stick ecotypes: “isolation by adaptation” and multiple roles for divergent selection. Evol 62:316–336CrossRefGoogle Scholar
  66. Ouborg NJ, Pertoldi C, Loeschcke V, Bijlsma R, Hedrick PW (2010) Conservation genetics in transition to conservation genomics. Trends Genet 26:177–187PubMedCrossRefGoogle Scholar
  67. Peňáz M (1996) Chondrostoma nasus—its reproduction strategy and possible reasons for a widely observed population decline—a review. In: Kirchhofer A, Hefti D (eds) Conservation of endangered freshwater fish in Europe. Birkhäuser Verlag, Basel, pp 279–285Google Scholar
  68. Pérez-Figueroa A, Saura M, Fernández J, Toro MA, Caballero A (2009) METAPOP—A software for the management and analysis of subdivided populations in conservation programs. Conserv Genet 10:1097–1099CrossRefGoogle Scholar
  69. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedCentralPubMedGoogle Scholar
  70. Rakowitz G, Berger B, Kubecka J, Keckeis H (2008) Functional role of environmental stimuli for the spawning migration in Danube nase Chondrostoma nasus L. Ecol Freshw Fish 17:502–514CrossRefGoogle Scholar
  71. Raymond M, Rousset F (1995) Genepop (Version-1.2)—population–genetics software for exact tests and ecumenicism. J Hered 86:248–249Google Scholar
  72. Reckendorfer W, Keckeis H, Tiitu G, Winkler G, Zornig H, Schiemer F (2001) Diet shifts in 0+ nase, Chondrostoma nasus: size specific differences and the effect of food availability. Arch Hydrobiol Suppl 135:425–440Google Scholar
  73. Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223–225CrossRefGoogle Scholar
  74. Rohlf FJ (2006) TPSDig Version 2.1. State University of New York, Stony BrookGoogle Scholar
  75. Salzburger W, Brandstätter A, Gilles A, Parson W, Hempel M, Sturmbauer C, Meyer A (2003) Phylogeography of the varione (Leuciscus souffia, Risso 1826) in Central Europe. Mol Ecol 12:2371–2386PubMedCrossRefGoogle Scholar
  76. Schluter D (1996) Ecological speciation in postglacial fishes. Phil Trans R Soc B 351:807–814CrossRefGoogle Scholar
  77. Stockwell CA, Hendry AP, Kinnison MT (2003) Contemporary evolution meets conservation biology. Trends Ecol Evol 18:94–101CrossRefGoogle Scholar
  78. Szabo Z (1958) Beiträge zur Vermehrungsbiologie der Nase (C. nasus L.). Z Fisch N F 7:631–636Google Scholar
  79. Taylor EB (1999) Species pairs of north temperate freshwater fishes: evolution, taxonomy, and conservation. Rev Fish Biol Fish 9:299–324CrossRefGoogle Scholar
  80. Thornton KR, Jensen JD (2007) Controlling the false-positive rate in multilocus genome scans for selection. Genetics 175:737–750PubMedCentralPubMedCrossRefGoogle Scholar
  81. Vekemans X (2002) AFLP-SURV version 1.0. Laboratoire de Génétique et Ecologie Végétale, Université Libre de Bruxelles, BelgiumGoogle Scholar
  82. Vonlanthen P, Excoffier L, Bittner D, Persat H, Neuenschwander S, Largiadèr CR (2007) Genetic analysis of potential postglacial watershed crossings in Central Europe by the bullhead (Cottus gobio L.). Mol Ecol 16:4572–4584PubMedCrossRefGoogle Scholar
  83. Vos P, Hogers R, Bleeker M, Reijans M, Vandelee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP—a new technique for DNA-fingerprinting. Nucleic Acids Res 23:4407–4414PubMedCentralPubMedCrossRefGoogle Scholar
  84. Vyskocilova M, Simkova A, Martin JF (2007) Isolation and characterization of microsatellites in Leuciscus cephalus (Cypriniformes, Cyprinidae) and cross-species amplification within the family Cyprinidae. Mol Ecol Notes 7:1150–1154CrossRefGoogle Scholar
  85. Weeks AR, Sgro CM, Young AG et al (2011) Assessing the benefits and risks of translocations in changing environments: a genetic perspective. Evol Appl 4:709–725PubMedCentralPubMedCrossRefGoogle Scholar
  86. Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370CrossRefGoogle Scholar
  87. West-Eberhard MJ (2003) Developmental plasticity and evolution. Oxford University Press, OxfordGoogle Scholar
  88. Wilding CS, Butlin RK, Grahame J (2001) Differential gene exchange between parapatric morphs of Littorina saxatilis detected using AFLP markers. J Evol Biol 14:611–619CrossRefGoogle Scholar
  89. Willi Y, Van Buskirk J, Hoffmann AA (2006) Limits to the adaptive potential of small populations. Annu Rev Ecol Evol Syst 37:433–458CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Alan G. Hudson
    • 1
    • 2
    • 3
  • Pascal Vonlanthen
    • 1
    • 2
  • Ole Seehausen
    • 1
    • 2
  1. 1.Division of Aquatic Ecology, Institute of Ecology & EvolutionUniversity of BernBernSwitzerland
  2. 2.Department of Fish Ecology and EvolutionEAWAG Center for Ecology, Evolution and BiogeochemistryKastanienbaumSwitzerland
  3. 3.Department of Ecology and Environmental ScienceUmeå UniversityUmeåSweden

Personalised recommendations