Advertisement

Conservation Genetics

, Volume 15, Issue 3, pp 665–677 | Cite as

Evolutionary history and population genetics of a cyprinid fish (Iberochondrostoma olisiponensis) endangered by introgression from a more abundant relative

  • Carla Sousa-SantosEmail author
  • H. F. Gante
  • J. Robalo
  • P. Proença Cunha
  • A. Martins
  • M. Arruda
  • M. J. Alves
  • V. Almada
Research Article

Abstract

The use of molecular techniques has shown that hybridization and introgression have significant impacts in evolution, by means of transfer of genetic variation and formation of hybrid species. In this paper we use mitochondrial and nuclear sequence data to investigate the evolutionary history, levels of genetic diversity and population differentiation of a rare and endangered fish species. Our results suggest that a hybrid origin scenario of Chondrostoma olisiponensis is a likely explanation for the shared genetic and morphological traits with Iberochondrostoma and Achondrostoma + Pseudochondrostoma. The basal positioning of C. olisiponensis alleles in all loci analyzed indicates that hybridization events occurred before differentiation within each of these groups, most likely during Middle–Late Miocene. Originally described as C. olisiponensis, we suggest that this species should be placed in the genus Iberochondrostoma to avoid confusion with ‘real’ central European Chondrostoma and to (partially) reflect its evolutionary history. Analyses of levels of genetic diversity and patterns of population subdivision show that populations of the rare Iberochondrostoma olisiponensis are differentiated (high and significant φST and F ST) and genetically depauperate (very low S, π, and θ). I. olisiponensis is simultaneously imperiled by small population sizes and contemporary bidirectional hybridization with another critically endangered sympatric species (Iberochondrostoma lusitanicum). Urgent ex-situ conservation measures involving supportive breeding of I. olisiponensis are needed to preserve present genetic variation and eventually increase in situ population sizes, along with further studies focused on different life history and behavioral characteristics of this highly endangered species.

Keywords

Intergeneric hybridization Introgression Hybrid speciation Cyprinidae Parental species displacement Mito-nuclear discordance 

Notes

Acknowledgments

Professor Vítor Almada passed away during the manuscript revision process of this paper. He was the coordinator of the UIEE-ISPA and he devoted much of his work to the preservation of native freshwater fish species in Portugal. CS-S and JR will be forever grateful for his guidance. We thank Ignacio Doadrio (MNCN-CSIC, Madrid, Spain) and Jöerg Freyhof (IGB, Berlin, Germany) for providing samples for genetic analyses. We also thank G. Lemos, C. Lima, P. Coelho and F. Ronenberg for their help during sampling, and M. Drago for help in the lab. The AFN and ICNB Portuguese agencies provided the necessary permits for fielwork. This study was financed by the European Fund for Economic and Regional Development (FEDER) through the Program Operational Factors of Competitiveness (COMPETE) and National Funds through the FCT—Portuguese Foundation of Science and Technology, under the Pluriannual Program UI&D 331/94 and 329/2011, and the projects PTDC/AAC-CLI/103110/2008 and PTDC/BIA-BDE/66519/2006. C. Sousa-Santos was supported by a Post-doctoral grant from FCT (SFRH/BPD/29774/2006).

Supplementary material

10592_2014_568_MOESM1_ESM.docx (58 kb)
Online Resource 1 (DOCX 57 kb)
10592_2014_568_MOESM2_ESM.eps (798 kb)
Online Resource 2 Phylogenetic trees based on cyt b (a), β-actin (b) and S7 (c) gene sequences. Majority rule consensus trees are plotted and bootstrap values and posterior probabilities (higher than 50 and 0.5, respectively) are depicted for all the methods applied (above the line MP/NJ/ME, below the line ML/Bayesian) (EPS 797 kb)
10592_2014_568_MOESM3_ESM.docx (16 kb)
Online Resource 3 (DOCX 15 kb)

References

  1. Abbott R, Albach D, Ansell S et al (2013) Hybridization and speciation. J Evol Biol 26:229–246PubMedCrossRefGoogle Scholar
  2. Aboim MA, Mavárez J, Bernatchez L, Coelho MM (2010) Introgressive hybridization between two Iberian endemic cyprinid fish: a comparison between two independent hybrid zones. J Evol Biol 23:817–828PubMedCrossRefGoogle Scholar
  3. Almaça C (1965) Contribuition à la connaissance des poisson des eaux intérieures du Portugal. Revista da Faculdade de Ciências da Universidade de Lisboa (2ª série C) 13:225–262Google Scholar
  4. Almada VC, Oliveira RF (1997) Sobre o uso de estatística de simulação em estudos de comportamento. Análise Psicológica 1(XV):97–109Google Scholar
  5. Almodóvar A, Nicola GG, Leal S, Torralva M, Elvira B (2012) Natural hybridization with invasive bleak Alburnus alburnus threatens the survival of Iberian endemic calandino Squalius alburnoides complex and Southern Iberian chub Squalius pyrenaicus. Biol Inv 14:2237–2242CrossRefGoogle Scholar
  6. Alves MJ, Coelho MM (1994) Genetic variation and population subdivision of the endangered Iberian cyprinid Chondrostoma lusitanicum. J Fish Biol 44:627–636CrossRefGoogle Scholar
  7. Alves MJ, Coelho MM, Collares-Pereira MJ, Dowling TE (1997) Maternal ancestry of the Rutilus alburnoides complex (Teleostei, Cyprinidae) as determined by analysis of cytochrome b sequences. Evolution 51:1584–1592CrossRefGoogle Scholar
  8. Alves MJ, Coelho H, Collares-Pereira MJ, Coelho MM (2001a) Mitochondrial DNA variation in the highly endangered cyprinid fish Anaecypris hispanica: importance for conservation. Heredity 87:463–473PubMedCrossRefGoogle Scholar
  9. Alves MJ, Coelho MM, Collares-Pereira MJ (2001b) Evolution in action through hybridization and polyploidy in an Iberian freshwater fish: a genetic review. Genetica 111:375–385PubMedCrossRefGoogle Scholar
  10. April J, Mayden RL, Hanner RH, Bernatchez L (2011) Genetic calibration of species diversity among North America’s freshwater fishes. PNAS 108:10602–10607PubMedCentralPubMedCrossRefGoogle Scholar
  11. Arnold ML (2006) Evolution through genetic exchange. Oxford University Press, New YorkGoogle Scholar
  12. Barbanera F, Zuffi MAL, Guerrini M, Gentilli A et al (2009) Molecular phylogeography of the asp viper Vipera aspis (Linnaeus, 1758) in Italy: evidence for introgressive hybridization and mitochondrial DNA capture. Mol Phylogenet Evol 52:103–114PubMedCrossRefGoogle Scholar
  13. Barriel V (1994) Molecular phylogenies and how to code insertion/deletion events. Life Sci 317:693–701Google Scholar
  14. Bohlen J, Ráb P (2001) Species- and hybrid richness in spined loaches (genus Cobitis L.) with a checklist of the species and hybrids of Europe. J Fish Biol 59a:75–89CrossRefGoogle Scholar
  15. Brito RM, Briolay J, Galtier N, Bouvet Y, Coelho MM (1997) Phylogenetic relationships within genus Leuciscus (Pisces, Cyprinidae) in Portuguese freshwaters, based on mitochondrial cytochrome b sequences. Mol Phylogenet Evol 8:435–442PubMedCrossRefGoogle Scholar
  16. Burgess KS, Morgan M, Deverno L, Husband BC (2005) Asymmetrical introgression between two Morus species (M. alba, M. rubra) that differ in abundance. Mol Ecol 14:3471–3483PubMedCrossRefGoogle Scholar
  17. Cabral MJ, Almeida J, Almeida PR, Dellinger T et al (eds) (2005) Livro Vermelho dos Vertebrados de Portugal. Instituto de Conservação da Natureza, LisboaGoogle Scholar
  18. Carson EW, Dowling T (2006) Influence of hydrogeographic history and hybridization on the distribution of genetic variation in the pupfishes Cyprinodon atrorus and C. bifasciatus. Mol Ecol 15:667–679PubMedCrossRefGoogle Scholar
  19. Chan KMA, Levin SA (2005) Leaky prezygotic isolation and porous genomes: rapid introgression of maternally inherited DNA. Evolution 59:720–729PubMedCrossRefGoogle Scholar
  20. Chávez CH, Turgeon J (2007) Asexual and sexual hybrids between Fundulus diaphanous and F. heteroclitus in the Canadian Atlantic region. Mol Ecol 16:1467–1480CrossRefGoogle Scholar
  21. Chen Y, Parmenter S, May B (2013) Genetic characterization and management of the endangered Mohave tui chub. Conserv Genet 14:11–20CrossRefGoogle Scholar
  22. Chow S, Hazama K (1998) Universal PCR primers for S7 ribosomal protein gene introns in fish. Mol Ecol 7:1255–1256PubMedGoogle Scholar
  23. Clement M, Posada D, Crandall KA (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9:1657–1660PubMedCrossRefGoogle Scholar
  24. Collares-Pereira MJ (1983) Cytotaxonomic studies in Iberian cyprinids 1. Caryology of Chondrostoma lusitanicum Collares-Pereira 1980. Cytologia 48:73–76CrossRefGoogle Scholar
  25. Collares-Pereira MJ, Coelho MM (1983) Biometrical analysis of Chondrostoma polylepis × Rutilus arcasi natural hybrids (Osteichthyes–Cypriniformes–Cyprinidae). J Fish Biol 23:495–509CrossRefGoogle Scholar
  26. Crivelli AJ (2006) Iberochondrostoma lusitanicum. In: IUCN 2012. IUCN Red List of Threatened Species. Version 2012.2. www.iucnredlist.org. Downloaded on 06 March 2013
  27. Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9:772PubMedCrossRefGoogle Scholar
  28. Doadrio I (1980) Descripción de un nuevo género y una nueva especie Iberocypris palaciosi (Pisces, Cyprinidae). Doñana Acta Vertebrata 7:5–16Google Scholar
  29. Dowling TE, Secor CL (1997) The role of hybridization and introgression in the diversification of animals. Annu Rev Ecol Syst 28:593–619CrossRefGoogle Scholar
  30. Dowling TE, Saltzgiver MJ, Marsh PC (2012) Genetic structure within and among populations of the endangered razorback sucker (Xyrauchen texanus) as determined by analysis of microsatellites. Conserv Genet 13:1073–1083CrossRefGoogle Scholar
  31. Earl DA, vonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361CrossRefGoogle Scholar
  32. Elvira B, Rincón PA, Velasco JC (1990) Chondrostoma polylepis Steindachner × Rutilus lemmingii (Steindachner) (Osteichthyes, Cyprinidae), a new natural hybrid from Duero River basin, Spain. J Fish Biol 37:745–754CrossRefGoogle Scholar
  33. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620PubMedCrossRefGoogle Scholar
  34. Excoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.0b: an integrated software package for population genetics data analysis. Evol Bioinform 1:47–50Google Scholar
  35. Falush D, Stephens M, Donnelly P (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587PubMedCentralPubMedGoogle Scholar
  36. Gante HF, Collares-Pereira MJ, Coelho MM (2004) Introgressive hybridisation between two Iberian Chondrostoma species (Teleostei, Cyprinidae) revisited: new evidence from morphology, mitochondrial DNA, allozymes and NOR-phenotypes. Folia Zool 53:423–432Google Scholar
  37. Gante HF, Santos CD, Alves MJ (2007) A new species of Chondrostoma Agassiz, 1832 (Cypriniformes: Cyprinidae) with sexual dimorphism from the lower Rio Tagus Basin, Portugal. Zootaxa 1616:23–35Google Scholar
  38. Gante HF, Santos CD, Alves MJ (2010) Phylogenetic relationships of the newly described species Chondrostoma olisiponensis (Teleostei: Cyprinidae). J Fish Biol 76:965–974CrossRefGoogle Scholar
  39. Gante H, Santos CD, Alves MJ, Rodrigues J (2012) Iberochondrostoma olisiponensis. In: IUCN 2012. IUCN Red List of Threatened Species. Version 2012.2. www.iucnredlist.org. Downloaded on 06 March 2013
  40. Good JM, Hird S, Reid N, Demboski JR et al (2008) Ancient hybridization and mitochondrial capture between two species of chipmunks. Mol Ecol 17:1313–1327PubMedCrossRefGoogle Scholar
  41. Guindon S, Gascuel O (2003) A simple, fast and accurate method to estimate large phylogenies by maximum-likelihood. Syst Biol 52:696–704PubMedCrossRefGoogle Scholar
  42. Hubbs CL (1955) Hybridization between fish species in nature. Syst Zool 4:1–20CrossRefGoogle Scholar
  43. Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801–1806PubMedCrossRefGoogle Scholar
  44. Kimura M (1983) The neutral theory of molecular evolution. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  45. Lepais O, Petit RJ, Guichoux E, Lavabre JE et al (2009) Species relative abundance and direction of introgression in oaks. Mol Ecol 18:2228–2242PubMedCrossRefGoogle Scholar
  46. Leunda P, Elvira B, Ribeiro F, Miranda R et al (2009) International standardization of common names for Iberian endemic freshwater fishes. Limnetica 28:189–202Google Scholar
  47. Levin DA, Francisco-Ortega J, Jansen RK (1996) Hybridization and the extinction of rare plant species. Conserv Biol 10:10–16CrossRefGoogle Scholar
  48. Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452PubMedCrossRefGoogle Scholar
  49. Lopes-Cunha M, Aboim MA, Mesquita N, Alves MJ et al (2012) Population genetic structure in the Iberian cyprinid fish Iberochondrostoma lemmingii (Steindachner, 1866): disentangling species fragmentation and colonization processes. Biol J Linn Soc 105:559–572CrossRefGoogle Scholar
  50. Machordom A, Berrebi P, Doadrio I (1990) Spanish barbel hybridization detected using enzymatic markers: Barbus meridionalis Risso × Barbus haasi Mertens (Osteichthyes, Cyprinidae). Aquat Living Res 3:295–303CrossRefGoogle Scholar
  51. Maddison WP, Maddison DR (2011) Mesquite: a modular system for evolutionary analysis. Version 2.75. Available from http://mesquiteproject.org
  52. Mallet J (2005) Hybrid speciation. Nature 446:279–283CrossRefGoogle Scholar
  53. McCusker MR, Bentzen P (2010) Positive relationships between genetic diversity and abundance in fishes. Mol Ecol 19:4852–4862PubMedCrossRefGoogle Scholar
  54. Mesquita N, Hänfling B, Carvalho GR, Coelho MM (2005) Phylogeography of the cyprinid Squalius aradensis and implications for conservation of the endemic freshwater fauna of southern Portugal. Mol Ecol 14:1939–1954PubMedCrossRefGoogle Scholar
  55. Nevado B, Koblmüller S, Sturmbauer C, Snoeks J, Usano-Alemany J, Verheyen E (2009) Complete mitochondrial DNA replacement in a Lake Tanganyika cichlid fish. Mol Ecol 18:4240–4255PubMedCrossRefGoogle Scholar
  56. Osborne M, Sharp A, Monzingo J, Propst DL, Turner TF (2012) Genetic analysis suggests high conservation value of peripheral populations of Chihuahau chub (Gila nigrescens). Conserv Genet 13:1317–1328CrossRefGoogle Scholar
  57. Pais J, Cunha PP, Pereira D, Legoinha P et al (2012) The Paleogene and Neogene of Western Iberia (Portugal). A Cenozoic record in the European Atlantic domain. SpringerBriefs in Earth Sciences. Springer, New York 158pCrossRefGoogle Scholar
  58. Perea S, Böhme M, Zupanöic P, Freyhof J, Sanda R, Özulug M, Abdoli A, Doadrio I (2010) Phylogenetic relationships and biogeographical patterns in Circum-Mediterranean subfamily Leuciscinae (Teleostei, Cyprinidae) inferred from both mitochondrial and nuclear data. BMC Evol Biol 10:265PubMedCentralPubMedCrossRefGoogle Scholar
  59. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedCentralPubMedGoogle Scholar
  60. Pritchard JK, Wen W, Falush D (2010) Documentation for STRUCTURE software: version 2.3. Available from http://pritch.bsd.uchicago.edu/structure.html
  61. Ráb P, Rábová M, Bohlen J, Lusk S (2000) Genetic differentiation of the two hybrid diploid-polyploid complexes of loaches, genus Cobitis (Cobitidae) involving C. taenia, C. elongatoides and C. spp. in the Czech Republic: karyotypes and cytogenetic diversity. Folia Zool 49:55–66Google Scholar
  62. Rhymer JM, Simberloff D (1996) Extinction by hybridization and introgression. Annu Rev Ecol Syst 27:83–109CrossRefGoogle Scholar
  63. Robalo JI, Sousa-Santos C, Levy A, Almada VC (2006) Molecular insights on the taxonomic position of the paternal ancestor of the Squalius alburnoides hybridogenetic complex. Mol Phylogenet Evol 39:276–281PubMedCrossRefGoogle Scholar
  64. Robalo JI, Almada VC, Levy A, Doadrio I (2007a) Re-examination and phylogeny of the genus Chondrostoma based on mitochondrial and nuclear data and the definition of 5 new genera. Mol Phylogenet Evol 42:362–372PubMedCrossRefGoogle Scholar
  65. Robalo JI, Doadrio I, Valente A, Almada VC (2007b) Identification of ESUs in the critically endangered Portuguese minnow Chondrostoma lusitanicum Collares-Pereira 1980, based on a phylogeographical analysis. Conserv Genet 8:1225–1229CrossRefGoogle Scholar
  66. Ronquist F, Huelsenbeck JP (2003) MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574PubMedCrossRefGoogle Scholar
  67. Rosenberg NA (2004) Distruct: a program for the graphical display of population structure. Mol Ecol Notes 4:137–138CrossRefGoogle Scholar
  68. Salgueiro P, Carvalho G, Collares-Pereira MJ, Coelho MM (2003) Microsatellite analysis of genetic population structure of the endangered cyprinid Anaecypris hispanica in Portugal: implications for conservation. Biol Conserv 109:47–56CrossRefGoogle Scholar
  69. Schmidt TR, Gold JR (1993) Complete sequence of the mitochondrial cytochrome b gene in the Cherryfin Shinner, Liturus roseipinnis (Teleostei: Cyprinidae). Copeia 3:880–883CrossRefGoogle Scholar
  70. Scribner KT, Page KS, Bartron ML (2001) Hybridization in freshwater fishes: a review of case studies and cytonuclear methods of biological inference. Rev Fish Biol Fish 10:293–323CrossRefGoogle Scholar
  71. Seehausen O (2006) Conservation: losing biodiversity by reverse speciation. Curr Biol 16:R334–R337PubMedCrossRefGoogle Scholar
  72. Simmons MP, Ochoterena H (2000) Gaps as characters in sequence-based phylogenetic analyses. Syst Biol 49:369–381PubMedCrossRefGoogle Scholar
  73. Smith GR (1992) Introgression in fishes: significance for paleontology, cladistics, and evolutionary rates. Syst Biol 41:41–57CrossRefGoogle Scholar
  74. Sousa V, Penha F, Collares-Pereira MJ, Chikhi L, Coelho MM (2008) Genetic structure and signature of population decrease in the critically endangered freshwater cyprinid Chondrostoma lusitanicum. Conserv Genet 9:791–805CrossRefGoogle Scholar
  75. Sousa V, Penha F, Pala I, Chikhi L, Coelho MM (2010) Conservation genetics of a critically endangered Iberian minnow: evidence of population decline and extirpations. Conserv Genet 13:162–171Google Scholar
  76. Sousa VC, Beaumont MA, Fernandes P, Coelho MM, Chikhi L (2012) Population divergence with or without admixture: selecting models using an ABC approach. Heredity 108:521–530PubMedCentralPubMedCrossRefGoogle Scholar
  77. Sousa-Santos C, Robalo J, Collares-Pereira MJ, Almada V (2005) Heterozygous indels as useful tools in the reconstruction of DNA sequences and in the assessment of ploidy level and genomic composition of hybrid organisms. DNA Seq 16:462–467PubMedGoogle Scholar
  78. Sterling KA, Reed DH, Noonan BP, Warren ML Jr (2012) Genetic effects of habitat fragmentation and population isolation on Etheostoma raneyi (Percidae). Conserv Genet 13:859–872CrossRefGoogle Scholar
  79. Swofford DL (1998) PAUP—phylogenetic analysis using parsimony (and other methods) version 4.0. Sinauer Associates, SunderlandGoogle Scholar
  80. Tang Q-Y, Liu S-Q, Yu D, Liu H-Z, Danley PD (2012) Mitochondrial capture and incomplete lineage sorting in the diversification of balitorine loaches (Cypriniformes, Balitoridae) revealed by mitochondrial and nuclear genes. Zool Scr 41:233–247CrossRefGoogle Scholar
  81. Taylor SA, Patirana A, Birt T, Friesen V (2012) Cryptic introgression between murre sister species (Uria spp.) in the Pacific low Arctic: frequency, cause, and implications. Polar Biol 35:931–940CrossRefGoogle Scholar
  82. Toews DPL, Brelsford A (2012) The biogeography of mitochondrial and nuclear discordance in animals. Mol Ecol 21:3907–3930PubMedCrossRefGoogle Scholar
  83. Ünver B, Erk’Akan F (2005) A natural hybrid of Leuciscus cephalus (L.) and Chalcalburnus chalcoides (Güldenstädt) (Osteichthyes–Cyprinidae) from Lake Tödürge (Sivas, Turkey). J Fish Biol 66:899–910CrossRefGoogle Scholar
  84. Wirtz P (1999) Mother species–father species: unidirectional hybridization in animals with female choice. Anim Behav 58:1–12PubMedCrossRefGoogle Scholar
  85. Wright S (1931) Evolution in Mendelian populations. Genetics 16:97–159PubMedCentralPubMedGoogle Scholar
  86. Yakovlev VN, Slyn’ko Yv, Grechanov IG, Krysanov EY (2000) Distant hybridization in fish. J Ichthyol 40:298–311Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Carla Sousa-Santos
    • 1
    Email author
  • H. F. Gante
    • 2
  • J. Robalo
    • 1
  • P. Proença Cunha
    • 3
  • A. Martins
    • 4
  • M. Arruda
    • 5
  • M. J. Alves
    • 6
  • V. Almada
    • 1
  1. 1.Unidade de Investigação em Eco-EtologiaISPA - Instituto Universitário de Ciências Psicológicas, Sociais e da VidaLisbonPortugal
  2. 2.Zoological InstituteUniversity of BaselBaselSwitzerland
  3. 3.Department of Earth Sciences, IMAR-Marine and Environmental Research CentreUniversity of CoimbraCoimbraPortugal
  4. 4.Departamento de Geociências, Centro de GeofísicaUniversity of ÉvoraÉvoraPortugal
  5. 5.Instituto Polivalente Edik Ramon - Ensino ParticularLuanda-SulAngola
  6. 6.Museu Nacional de História Natural e da CiênciaUniversidade de LisboaLisbonPortugal

Personalised recommendations