Conservation Genetics

, Volume 15, Issue 2, pp 469–481 | Cite as

Still a one species genus? Strong genetic diversification in the world’s largest living odonate, the Neotropical damselfly Megaloprepus caerulatus

  • Wiebke FeindtEmail author
  • Ola Fincke
  • Heike Hadrys
Research Article


Mesoamerican biodiversity is increasingly threatened by anthropogenic destruction of natural land cover. Habitat degradation and climate change are primary threats to specialized forest odonate species that are important model organisms for forest health and defining conservation units. The extreme niche specialization of Megaloprepus caerulatus, the world’s largest extant odonate, makes it well suited as an indicator for changing environmental conditions. Megaloprepus, which is considered to be a monospecific genus, is highly dependent on old growth forests whose water filled tree holes are limiting reproductive resources for this species. Here, we focus on the question how historical and recent fragmentation events, strong niche conservatism and ecological conditions have affected population dynamics, viability and the species status in this evolutionarily old genus. Two mitochondrial sequence markers (ND1 and 16S rRNA) and a set of microsatellites were used to analyze population structure and genetic diversity of M. caerulatus in the northern part of its distributional range. Results suggested an absence of gene flow and no shared haplotypes among the study populations. Statistical parsimony indicated high sub-structuring among populations with sequence diversity similar to levels found at the species level compared to other odonates. In sum, the genetic data suggest that Megaloprepus may actually consist of more than one species. The taxonomic status of the group should be revised in light of the three distinct genetic clusters found in different forest regions. The results may also allow insights into the impact of recent and historical habitat fragmentation on a strong Neotropical forest restricted insect species.


Conservation genetics Speciation Neotropical primary forests Odonata 



We appreciate support received from the following Biological Stations and National Parks: the Smithsonian Tropical Research Institue—Barro Colorado Island, the Área de Conservación Osa (ACOSA)—Corcovado National Park, the Organization for Tropical Studies—Biological Station La Selva, and the Instituto de Biología, Universidad Nacional Autónoma de México (UNAM)—Los Tuxtlas Tropical Biology Station; their administrative directors and scientists: Wendy A. Barrantes R., Rosamond I. Coates, Enrique González Soriano, and Oris Acevedo. Furthermore, we would like to thank the Autoridad Nacional del Ambiente (ANAM), the Ministerio de Ambiente, Energía y Telecomunicaciones (MINAET), and the Secretaría de Medio Ambiente y Recursos Naturales (SEMARNAT) for permission to collect and do research. We are grateful to Bernd Schierwater, Sandra Damm, Annika Schlötelburg, and Rosamond I. Coates for helpful comments. This work was supported by a German Science Foundation (DFG) grant HA 1947/6-1 given to HH, travel grants from the German Academic Exchange Service (DAAD) and the Graduate Academy from the Leibniz University Hannover to WF, and by NSF grant IOS-0641679 to OMF.

Supplementary material

10592_2013_554_MOESM1_ESM.docx (36 kb)
Supplementary material 1 (DOCX 36 kb)


  1. Abraham D, Ryrholm N, Wittzell H, Holloway JD, Scoble MJ, Löfstedt C (2001) Molecular phylogeny of the subfamilies in Geometridae (Geometroidea: Lepidoptera). Mol Phylogenet Evol 20:65–77PubMedCrossRefGoogle Scholar
  2. Akaike H (1973) Information theory and an extension of the maximum likelihood principle. In: Petrov BN, Csaki F (eds) 2nd international symposium on information theory. Akademiai Kiado, BudapestGoogle Scholar
  3. Balint M, Domisch S, Engelhardt CHM, Haase P, Lehrian S, Sauer J, Theissinger K, Pauls SU, Nowak C (2011) Cryptic biodiversity loss linked to global climate change. Nat Clim Change 1:313–318CrossRefGoogle Scholar
  4. Barrantes G (2009) The role of historical and local factors in determining species composition of the highland avifauna of Costa Rica and Western Panamá. Rev Biol Trop 57:333–349Google Scholar
  5. Bisby F, Roskov Y, Culham A, Orrell T, Nicolson D, Paglinawan L, Bailly N, Kirk P, Bourgoin T, Baillargeon G, Hernandez F, De Wever A, Kunze T (2013) Species 2000 & ITIS Catalogue of Life. In: Species 2000, p. Digital resource at, Reading
  6. Brodie J, Post E, Laurance WF (2011) Climate change and tropical biodiversity: a new focus. Trends Ecol Evol (Personal edition) 27:145–150CrossRefGoogle Scholar
  7. Brown KS (1997) Diversity, disturbance, and sustainable use of Neotropical forests: insects as indicators for conservation monitoring. J Insect Conserv 1:25–42CrossRefGoogle Scholar
  8. Calderón R, Boucher T, Bryer M, Sotomayor L, Kappelle M (2004) Setting biodiversity conservation priorities in Central America: action site selection for the development of a first portfolio. The Nature Conservancy, Sna JoséGoogle Scholar
  9. Carballa OL, Giere S, Cordero A, Hadrys H (2007) Isolation and characterization of microsatellite loci to study parthenogenesis in the citrine forktail, Ischnura hastata (Odonata: Coenagrionidae). Mol Ecol Notes 7:839–841CrossRefGoogle Scholar
  10. Carrillo E, Saenz JC, Fuller TK (2002) Movements and activities of white-lipped peccaries in Corcovado National Park, Costa Rica. Biol Conserv 108:317–324CrossRefGoogle Scholar
  11. Clausnitzer V, Lindeboom M (2002) Natural history and description of the dendrolimnetic larva of Coryphagrion grandis (Odonata). Int J Odonatol 5:29–44CrossRefGoogle Scholar
  12. Clement M, Posada D, Crandall K (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9(10):1657–1660PubMedCrossRefGoogle Scholar
  13. Coen E (1983) Climate. In: Janzen DH (ed) Costa Rican natural history. The University of Chicago Press, Chicago, pp 35–46Google Scholar
  14. Corbet PS (1999) Dragonflies: behaviour and ecology of Odonata. Harley Books, EssexGoogle Scholar
  15. Cordero Rivera A (2006) Forests and Dragonflies. Fourth WDA International Symposium of Odonatology. Pensoft, SofiaGoogle Scholar
  16. Córdoba-Aguilar A (2008) Dragonflies and damselflies. Model organism for ecological and evolutionary research. Oxford University Press, OxfordCrossRefGoogle Scholar
  17. Damm S, Hadrys H (2012) A dragonfly in the desert: genetic pathways of the widespread Trithemis arteriosa (Odonata: Libellulidae) suggest male-biased dispersal. Org Divers Evol 12:267–279CrossRefGoogle Scholar
  18. Damm S, Dijkstra K-DB, Hadrys H (2010a) Red drifters and dark residents: the phylogeny and ecology of a Plio-Pleistocene dragonfly radiation reflects Africa′s changing environment (Odonata, Libellulidae, Trithemis). Mol Phylogenet Evol 54:870–882PubMedCrossRefGoogle Scholar
  19. Damm S, Schierwater B, Hadrys H (2010b) An integrative approach to species discovery in odonates: from character-based DNA barcoding to ecology. Mol Ecol 19:3881–3893PubMedCrossRefGoogle Scholar
  20. Davies DAL, Tobin P (1984) A synopsis of the dragonflies of the world: a systematic list of the extant species of Odonata. In: Societas Internationalis Odonatologia Rapid Communications (Supplements), vol 1, Zygoptera, Anisozygoptera. UtrechtGoogle Scholar
  21. DeClerck FAJ, Chazdon R, Holl KD, Milder JC, Finegan B, Martinez-Salinas A, Imbach P, Canet L, Ramos Z (2010) Biodiversity conservation in human-modified landscapes of Mesoamerica: past, present and future. Biol Conserv 143:2301–2313CrossRefGoogle Scholar
  22. DeSalle R, Amato G (2004) The expansion of conservation genetics. Nat Rev Genet 5:702–712PubMedCrossRefGoogle Scholar
  23. Deutsch CA, Tewksbury JJ, Huey RB, Sheldon KS, Ghalambor CK, Haak DC, Martin PR (2008) Impacts of climate warming on terrestrial ectotherms across latitude. Proc Natl Acad Sci 105:6668–6672PubMedCentralPubMedCrossRefGoogle Scholar
  24. Dirzo R, García MC (1992) Rates of deforestation in Los Tuxtlas a neotropical area in south east Mexico. Conserv Biol 6:84–90CrossRefGoogle Scholar
  25. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797PubMedCentralPubMedCrossRefGoogle Scholar
  26. ESRI (2002) ArcView GIS 3.3. (ed. Environmental Systems Research Institute I, Redlands), CaliforniaGoogle Scholar
  27. Estrada A (1982) Survey and census of howler monkeys (Alouatta palliata) in the rain forest of “Los Tuxtlas”, Veracruz, Mexico. Am J Primatol 2:363–372CrossRefGoogle Scholar
  28. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 14:2611–2620PubMedCrossRefGoogle Scholar
  29. Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567PubMedCrossRefGoogle Scholar
  30. Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491PubMedCentralPubMedGoogle Scholar
  31. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  32. Fincke OM (1992) Interspecific competition for tree holes: consequences for mating systems and coexistence in neotropical damselflies. Am Nat 139:80–101CrossRefGoogle Scholar
  33. Fincke OM (1994) Population regulation of a tropical damselfly in the larval stage by food limitation, cannibalism, intraguild predation and habitat drying. Oecologia 100:118–127CrossRefGoogle Scholar
  34. Fincke OM (1998) The population ecology of Megaloprepus caerulatus and its effect on species assemblages in water-filled tree holes. Kluwer Academic, DordrechtGoogle Scholar
  35. Fincke OM (2006) Use of forest and tree species, and dispersal by giant damselflies (Pseudostigmatidae): their prospects in fragmented forests. In: Rivera AC (ed) Forest and dragonflies. 4th WDA International Symposium of Odonatology. Pensoft, Sofia, pp 103–125Google Scholar
  36. Fincke OM, Hadrys H (2001) Unpredictable offspring survivorship in the Damselfly, Megaloprepus coerulatus, shapes parental behavior, constrains sexual selection, and challenges traditional fitness estimates. Evolution 55:762–772PubMedCrossRefGoogle Scholar
  37. Fincke OM, Hedström I (2008) Differences in forest use and colonization by Neotropical tree-hole damselflies (Odonata: Pseudostigmatidae): implications for forest conversion. Studies Neotrop Fauna Environ 43:35–45CrossRefGoogle Scholar
  38. Garrison RW, von Ellenrieder N, Louton JA (2010) Damselfly genera of the new world: an illustrated and annotated key to the Zygoptera. The Johns Hopkins University Press, BaltimoreGoogle Scholar
  39. Gienapp P, Teplitsky C, Alho JS, Mills JA, MerilÄ J (2008) Climate change and evolution: disentangling environmental and genetic responses. Mol Ecol 17:167–178PubMedCrossRefGoogle Scholar
  40. Giere S, Hadrys H (2006) Polymorphic microsatellite loci to study population dynamics in a dragonfly, the libellulid Trithemis arteriosa (Burmeister 1839). Mol Ecol Notes 6:933–935CrossRefGoogle Scholar
  41. Groeneveld LF, Clausnitzer V, Hadrys H (2007) Gigantism in damselflies of Africa and South America: convergent evolution or homologous structures? Evidence from nuclear and mitochondrial sequence data. Mol Phylogenet Evol 42:339–346PubMedCrossRefGoogle Scholar
  42. Gullan PJ, Cranston PS (2010) The insects: an outline of entomology, vol 4. Wiley-Blackwell, New YorkGoogle Scholar
  43. Hadrys H, Balick M, Schierwater B (1992) Applications of random amplified polymorphic DNA (RAPD) in molecular ecology. Mol Ecol 1:55–63PubMedCrossRefGoogle Scholar
  44. Hadrys H, Schroth W, Schierwater B, Streit B, Fincke O (2005) Tree hole odonates as environmental monitors: non-invasive isolation of polymorphic microsatellites from the neotropical damselfly Megaloprepus caerulatus. Conserv Genet 6:481–483CrossRefGoogle Scholar
  45. Hadrys H, Clausnitzer V, Groeneveld LF (2006) The present role and future promise of conservation genetics for forest Odonates. In: Rivera AC (ed) Forest and dragonflies. 4th WDA International Symposium of Odonatology. Pensoft, Sofia, pp 279–299Google Scholar
  46. Hadrys H, Timm J, Streit B, Giere S (2007a) A panel of microsatellite markers to study sperm precedence patterns in the emperor dragonfly Anax imperator (Odonata: Anisoptera). Mol Ecol Notes 7:296–298CrossRefGoogle Scholar
  47. Hadrys H, Wargel A, Giere S, Kraus B, Streit B (2007b) A panel of microsatellite markers to detect and monitor demographic bottlenecks in the riverine dragonfly Orthetrum coerulescens F. Mol Ecol Notes 7:287–289CrossRefGoogle Scholar
  48. Harvey CA, Komar O, Chazdon R, Ferguson BG, Finegan B, Griffith DM, MartÍNez-Ramos M, Morales H, Nigh R, Soto-Pinto L, Van Breugel M, Wishnie M (2008) Integrating agricultural landscapes with biodiversity conservation in the Mesoamerican Hotspot. Conserv Biol 22:8–15PubMedCrossRefGoogle Scholar
  49. Hassall C, Thompson DJ (2008) The impact of environmental warming on Odonata—a review. Int J Odonatol 11:131–153CrossRefGoogle Scholar
  50. Hayes L, Mann DJ, Monastyrskii AL, Lewis OT (2009) Rapid assessments of tropical dung beetle and butterfly assemblages: contrasting trends along a forest disturbance gradient. Insect Conserv Divers 2:194–203CrossRefGoogle Scholar
  51. Heckman CW (2008) Encyclopedia of South American aquatic insects: Odonata—Zygoptera. Springer, LeidenCrossRefGoogle Scholar
  52. Hedström I, Sahlén G (2001) A key to the adult Costa Rican helicopter damselflies Odonata: Pseudostigmatidae with notes on their phenology and life zone preferences. Revista de Biología Tropical 49:1037–1056PubMedGoogle Scholar
  53. Hedström I, Sahlén G (2003) An extended description of the larva of Megaloprepus caerulatus from Costa Rica (Odonata: Pseudostigmatidae). Int J Odonatol 6:23–31CrossRefGoogle Scholar
  54. Holt RD, Gomulkiewicz R (2004) Conservation implications of niche conservatism and evolution in heterogeneous environments. In: Ferriere R, Dieckmann U, Couvet D (eds) Evolutionary conservation biology. Cambridge University Press, Cambridge, pp 244–264CrossRefGoogle Scholar
  55. Ingley SJ, Bybee SM, Tennessen KJ, Whiting MF, Branham MA (2012) Life on the fly: phylogenetics and evolution of the helicopter damselflies (Odonata, Pseudostigmatidae). Zoologica Scripta 41:637–650CrossRefGoogle Scholar
  56. Kalkman VJ, Clausnitzer V, Dijkstra K-D, Orr A, Paulson D, Tol J (2008) Global diversity of dragonflies (Odonata) in freshwater. In: Freshwater animal diversity assessment, vol 595. Springer Netherlands, pp 351–363Google Scholar
  57. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120PubMedCrossRefGoogle Scholar
  58. Kozak KH, Wiens JJ (2010) Accelerated rates of climatic-niche evolution underlie rapid species diversification. Ecol Lett 13:1378–1389PubMedCrossRefGoogle Scholar
  59. Laurance WF, Carolina Useche D, Rendeiro J, Kalka M, Bradshaw CJA, Sloan SP, Laurance SG, Campbell M, Abernethy K, Alvarez P, Arroyo-Rodriguez V, Ashton P, Benitez-Malvido J, Blom A, Bobo KS, Cannon CH, Cao M, Carroll R, Chapman C, Coates R et al (2012) Averting biodiversity collapse in tropical forest protected areas. Nature 489:290–294PubMedCrossRefGoogle Scholar
  60. Leigh EG (1999) Tropical forest ecology: a view from Barro Colorado Island. Oxford University Press, New YorkGoogle Scholar
  61. Lewis OT, Basset Y (2007) Insect conservation in tropical forests. In: Stewart A, New T, Lewis O (eds) Insect conservation biology. The Royal Entomological Society, London, pp 34–56CrossRefGoogle Scholar
  62. Librado P, Rozas J (2009) DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452PubMedCrossRefGoogle Scholar
  63. Magurran AE, Dornelas M (2010) Biological diversity in a changing world. Philos Trans R Soc B 365:3593–3597CrossRefGoogle Scholar
  64. Mayhew PJ, Jenkins GB, Benton TG (2008) A long-term association between global temperature and biodiversity, origination and extinction in the fossil record. Proc R Soc B 275:47–53PubMedCentralPubMedCrossRefGoogle Scholar
  65. McDade LA, Hartshorn GS (1994) La Selva Biological Station. In: McDade LA, Bawa KS, Hespenheide HA, Hartshorn GS (eds) La Selva: ecology and natural history of a neotropical rain forest. University of Chicago Press, Chicago, pp 6–18Google Scholar
  66. Mendoza E, Fay J, Dirzo R (2005) A quantitative analysis of forest fragmentation in Los Tuxtlas, southeast Mexico: patterns and implications for conservation. Revista Chilena de Historia Natural 78:451–467CrossRefGoogle Scholar
  67. Miller K, Chang E, Johnson N (2001) Defining common ground for the Mesoamerican Biological Corridor. World Resources Institute, Washington, D.C.Google Scholar
  68. Müller J, Müller K (2003) QuickAlign: a new alignment editor. Plant Mol Biol Rep 21:5CrossRefGoogle Scholar
  69. Murphy PG, Lugo AE (1995) Dry forests of Central America and the Caribbean. In: Bullock S, Mooney H, Medina E (eds) Seasonally dry tropical forests. Cambridge University Press, Cambridge, pp 9–34CrossRefGoogle Scholar
  70. Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858PubMedCrossRefGoogle Scholar
  71. Orr AG (2006) Odonata in Bornean tropical rain forest formations: diversity, endemicity and implications for conservation management. In: Cordero-Rivera A (ed) Forests and dragonflies. Sofia, Pensoft, pp 51–78Google Scholar
  72. Pannebakker BA, Niehuis O, Hedley A, Gadau J, Shuker DM (2010) The distribution of microsatellites in the Nasonia parasitoid wasp genome. Insect Mol Biol 19:91–98PubMedCrossRefGoogle Scholar
  73. Paulson D (2006) The importance of forests to Neotropical Dragonflies. In: Rivera AC (ed) Forests and Dragonflies. Fourth WDA International Symposium of Odonatology. Pensoft, Sofia, pp 79–101Google Scholar
  74. Pertoldi C, Bijlsma R, Loeschcke V (2007) Conservation genetics in a globally changing environment: present problems, paradoxes and future challenges. Biodivers Conserv 16:4147–4163CrossRefGoogle Scholar
  75. Pimm SL, Raven P (2000) Biodiversity: extinction by numbers. Nature 403:843–845PubMedCrossRefGoogle Scholar
  76. Pimm SL, Russell GJ, Gittleman JL, Brooks TM (1995) The future of biodiversity. Science 269:347–350PubMedCrossRefGoogle Scholar
  77. Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818PubMedCrossRefGoogle Scholar
  78. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedCentralPubMedGoogle Scholar
  79. Rich PV, Rich TH (1983) The Central American dispersal route: biotic history and palaeogeography. In: Janzen DH (ed) Costa Rican natural history. The University of Chicago Press, Chicago, pp 12–34Google Scholar
  80. Ronquist F, Huelsenbeck JP (2003) MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574PubMedCrossRefGoogle Scholar
  81. Rousset F (2008) Genepop’007: a complete reimplementation of the Genepop software for Windows and Linux. Mol Ecol Resour 8:103–106PubMedCrossRefGoogle Scholar
  82. Rutkowski R, Szczuka A, Zalewsk M, Korczyńska J, Gryziak G (2011) Failure of microsatellite’s cross-species amplification in common ground beetle Pterostichus melanarius (Illiger). Baltic J Coleopterol 11:17–24Google Scholar
  83. Schultz TD, Fincke OM (2009) Structural colours create a flashing cue for sexual recognition and male quality in a Neotropical giant damselfly. Funct Ecol 23:724–732CrossRefGoogle Scholar
  84. Schulze CH, Waltert M, Kessler PJA, Pitopang R, Veddeler D, Mühlenberg M, Gradstein SR, Leuschner C, Steffan-Dewenter I, Tscharntke T (2004) Biodiversity indicator groups of tropical land-use systems: comparing plants, birds, and insects. Ecol Appl 14:1321–1333CrossRefGoogle Scholar
  85. Simon C, Frati F, Beckenbach A, Crespi B, Liu H, Floors P (1994) Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Ann Entomol Soc Am 87:651–701Google Scholar
  86. Solórzano García B, Ellis EA, Rodríguez-Luna E (2012) Deforestation and primate habitat availability in Los Tuxtlas biosphere reserve, Mexico. Int J Ecosyst 2:61–66CrossRefGoogle Scholar
  87. Stehli FG, Webb SD (1985) The great American biotic interchange. Plenum Press, New YorkCrossRefGoogle Scholar
  88. Steinmann H (1997) World catalogue of Odonata: Zygoptera. Walter de GruyterGoogle Scholar
  89. Sutherland WJ, Adams WM, Aronson RB, Aveling R, Blackburn TM, Broad S, Ceballos G, CÔTÉ IM, Cowling RM, Da Fonseca GAB, Dinerstein E, Ferraro PJ, Fleishman E, Gascon C, Hunter Jr M, Hutton J, Kareiva P, Kuria A, Macdonald DW, Mackinnon K, Madgwick FJ, Mascia MB, McNeely J, Milner-Gulland EJ, Moon S, Morley CG, Nelson S, Osborn D, Pai M, Parsons ECM, Peck LS, Possingham H, Prior SV, Pullin AS, Rands MRW, Ranganathan J, Redford KH, Rodriguez JP, Seymour F, Sobel J, Sodhi NS, Stott A, Vance-Borland K, Watkinson AR (2009) One hundred questions of importance to the conservation of global biological diversity cien preguntas de importancia para la conservación de la diversidad biológica global. Conserv Biol 23:557–567Google Scholar
  90. Swofford DL (2002) PAUP* phylogenetic analysis using parsimony (*and other methods). Sinauer Associates, SunderlandGoogle Scholar
  91. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739PubMedCentralPubMedCrossRefGoogle Scholar
  92. Urbina-Cardona JN, Olivares-Pérez M, Reynoso VH (2006) Herpetofauna diversity and microenvironment correlates across a pasture–edge–interior ecotone in tropical rainforest fragments in the Los Tuxtlas Biosphere Reserve of Veracruz, Mexico. Biol Conserv 132:61–75CrossRefGoogle Scholar
  93. Watts PC, Rouquette JR, Saccheri IJ, Kemp SJ, Thompson DJ (2004) Molecular and ecological evidence for small-scale isolation by distance in an endangered damselfly, Coenagrion mercuriale. Mol Ecol 13:2931–2945PubMedCrossRefGoogle Scholar
  94. Watts PC, Rousset F, Saccheri IJ, Leblois R, Kemp SJ, Thompson DJ (2007) Compatible genetic and ecological estimates of dispersal rates in insect (Coenagrion mercuriale: Odonata: Zygoptera) populations: analysis of ‘neighbourhood size’ using a more precise estimator. Mol Ecol 16:737–751PubMedCrossRefGoogle Scholar
  95. Wiens JJ, Graham CH (2005) NICHE CONSERVATISM: integrating evolution, ecology, and conservation biology. Annu Rev Ecol Evol Syst 36:519–539CrossRefGoogle Scholar
  96. Wiens JJ, Ackerly DD, Allen AP, Anacker BL, Buckley LB, Cornell HV, Damschen EI, Jonathan Davies T, Grytnes J-A, Harrison SP, Hawkins BA, Holt RD, McCain CM, Stephens PR (2010) Niche conservatism as an emerging principle in ecology and conservation biology. Ecol Lett 13:1310–1324PubMedCrossRefGoogle Scholar
  97. Wright SJ, Muller-Landau HC (2006) The future of tropical forest species. Biotropica 38:287–301CrossRefGoogle Scholar
  98. Yanoviak SP (1999) Community structure in water-filled tree holes of Panama: effects of hole height and size. Selbyana 20:106–115Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.ITZ, Ecology & EvolutionUniversity of Veterinary Medicine HannoverHannoverGermany
  2. 2.Ecology and Evolutionary Biology Program, Department of BiologyUniversity of Oklahoma NormanOklahomaUSA
  3. 3.American Museum of Natural HistoryThe Sackler Institute for Comparative GenomicsNew YorkUSA
  4. 4.Department of Molecular Cellular and Developmental BiologyYale UniversityNew HavenUSA

Personalised recommendations