Conservation Genetics

, Volume 15, Issue 1, pp 49–59 | Cite as

Genetic diversity and structure of an endemic and critically endangered stream river salamander (Caudata: Ambystoma leorae) in Mexico

  • Armando Sunny
  • Octavio Monroy-VilchisEmail author
  • Victor Fajardo
  • Ulises Aguilera-Reyes
Research Article


Small or isolated populations are highly susceptible to stochastic events. They are prone and vulnerable to random demographic or environmental fluctuations that could lead to extinction due to the loss of alleles through genetic drift and increased inbreeding. We studied Ambystoma leorae an endemic and critically threatened species. We analyzed the genetic diversity and structure, effective population size, presence of bottlenecks and inbreeding coefficient of 96 individuals based on nine microsatellite loci. We found high levels of genetic diversity expressed as heterozygosity (Ho = 0.804, He = 0.613, He* = 0.626 and HNei = 0.622). The population presents few alleles (4–9 per locus) and genotypes (3–14 per locus) compared with other mole salamanders species. We identified three genetically differentiated subpopulations with a significant level of genetic structure (FST = 0.021, RST = 0.044 y Dest = 0.010, 95 % CI). We also detected a reduction signal in population size and evidence of a genetic bottleneck (M = 0.367). The effective population size is small (Ne = 45.2), but similar to another mole salamanders with restricted distributions or with recently fragmented habitat. The inbreeding coefficient levels detected are low (FIS = −0.619–0.102) as is gene flow. Despite, high levels of genetic diversity A. leorae is critically endangered because it is a small isolated population.


Microsatellites Endemic species Endangered species Conservation Mexico 



We deeply thank to Dr. Carlos Aguilar Ortigoza for borrowed a thermalcycler. We thank Brenda Cole and Carl Mitchell for valuable comments and English editing. We thank all the students who helped in field. We thank two anonymous reviewers for their comments that helped improve the manuscript. AS is grateful to the graduate program Maestría en Ciencias Agropecuarias y Recursos Naturales to Universidad Autónoma del Estado de México for the scholarship granted and also the scholarships received from CONACYT and COMECYT.

Supplementary material

10592_2013_520_MOESM1_ESM.docx (347 kb)
Supplementary material (DOCX 347 kb)


  1. Adams EM, Jones AG, Arnold SJ (2005) Multiple paternity in a natural population of a salamander with long-term sperm storage. Mol Ecol 14:1803–1810PubMedCrossRefGoogle Scholar
  2. Allendorf FW, Luikart G (2007) Conservation and the genetics of populations. Blackwell, HobokenGoogle Scholar
  3. Antao T, Lopes A, Lopes R, Beja-Pereira A, Luikart G (2008) LOSITAN: a workbench to detect molecular adaptation based on a Fst-outlier method. BMC Bioinformatics 9:323PubMedCrossRefPubMedCentralGoogle Scholar
  4. Belkhir K, Borsa P, Chikhi L, Raufaste N, Bonhomme F (2004) GENETIX 405 Logiciel sous Windows TM pour la Génétique des PopulationsGoogle Scholar
  5. Cabe PR, Page RB, Hanlon TJ, Aldrich ME, Connors L, Marsh DM (2007) Fine-scale population differentiation and gene flow in a terrestrial salamander (Plethodon cinereus) living in continuous habitat. Heredity 98:53–60PubMedCrossRefGoogle Scholar
  6. Calhoun AJK, deMaynadier PG (2008) Science and conservation of vernal pools in northeastern North America. CRC Press, Boca RatonGoogle Scholar
  7. Castañeda-Rico S, León-Paniagua L, Ruedas LA, Vázquez-Domínguez E (2011) High genetic diversity and extreme differentiation in the two remaining populations of Habromys simulatus. J Mammal 92:963–973CrossRefGoogle Scholar
  8. Chapuis M, Estoup PA (2007) Microsatellite null alleles and estimation of population differentiation. Mol Biol Evol 24:621–631PubMedCrossRefGoogle Scholar
  9. Cournet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent populations bottleneck from allele frequency data. Genetics 144:2001–2014Google Scholar
  10. Crawford NG (2010) SMOGD: software for the measurement of genetic diversity. Mol Ecol Resour 10:556–557PubMedCrossRefGoogle Scholar
  11. Curtis JMR, Taylor EB (2003) The genetic structure of coastal giant salamanders (Dicamptodon tenebrosus) in a managed forest. Biol Conserv 115:45–54CrossRefGoogle Scholar
  12. Davis AB, Verrell PA (2005) Demography and reproductive ecology of the Columbia spotted frog (Rana luteiventris) across the Palouse. Can J Zool 83:702–711CrossRefGoogle Scholar
  13. Degne JF, Stout IJ, Roth JD, Parkinson CL (2007) Population genetics and conservation of the threatened southeastern beach mouse (Peromyscus polionotus niveiventris): subspecies and evolutionary units. Conserv Genet 8:1441–1452CrossRefGoogle Scholar
  14. Dlugosh KM, Parker M (2008) Founding events in species invasions: genetic variation adaptive evolution and the role of multiple introductions. Mol Ecol 17:431–449CrossRefGoogle Scholar
  15. Dyer RJ (2009) GeneticStudio: a suite of programs for the spatial analysis of genetic marker data. Mol Ecol Resour 9:110–113PubMedCrossRefGoogle Scholar
  16. Excoffier L, Lischer HEL (2010) Arlequin suite ver 35: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567PubMedCrossRefGoogle Scholar
  17. Excoffier L, Smmosue PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA Haplotypes: applications to Human Mitochondrial DNA Restriction Data. Genetics 131:479–491PubMedGoogle Scholar
  18. Frankham R (1998) Inbreeding and extinction: island populations. Conserv Biol 12:665–675CrossRefGoogle Scholar
  19. Frankham R (2009) Effective population size/adult population size ratios in wildlife: a review. Genet Res 66:95–107CrossRefGoogle Scholar
  20. Frankham R, Ballou J, Briscoe D (2005) Introduction to conservation genetics. Cambridge University Press, CambridgeGoogle Scholar
  21. Funk WC, Tallmon DA, Allendorf FW (1999) Small effective population size in the long-toed salamander. Mol Ecol 8:1633–1640PubMedCrossRefGoogle Scholar
  22. Funk WC, Blouin MS, Corn PS, Maxell BA, Pilliod DS, Amish S, Allendorf FW (2005) Population structure of Columbia spotted frogs (Rana luteiventris) is strongly affected by the landscape. Mol Ecol 14:483–496PubMedCrossRefGoogle Scholar
  23. Gaggiotti OE, Lange O, Rassmann K, Gliddons C (1999) A comparison of two indirect methods for estimating average levels of gene for using microsatellite data. Mol Ecol 8:1513–1520PubMedCrossRefGoogle Scholar
  24. Gamble LR, McGarigal K, Jenkins CL, Timm BC (2006) Limitations of regulated “buffer zones” for the conservation of Marbled Salamanders. Wetlands 26:298–306CrossRefGoogle Scholar
  25. Gamble LR, McGarigal K, Compton BW (2007) Fidelity and dispersal in the pond-breeding amphibian. Ambystoma opacum: implications for spatio-temporal population dynamics and conservation. Biol Conserv 139:247–257CrossRefGoogle Scholar
  26. Garner A, Rachlow J, Waits L (2005) Genetic diversity and population divergence in fragmented habitats: conservation of Idaho ground squirrels. Conserv Genet 6:759–774CrossRefGoogle Scholar
  27. Garza JC, Williamson EG (2001) Detection of reduction in population size using data from microsatellite loci. Mol Ecol 10:305–318PubMedCrossRefGoogle Scholar
  28. Gibbs JP (1998) Distribution of woodland amphibians along a forest fragmentation gradient. Landscape Ecol 13:263–268CrossRefGoogle Scholar
  29. Giordano AR, Ridenhour BJ, Storfer A (2007) The influence of altitude and topography on genetic structure in the long-toed salamander (Ambystoma macrodactulym). Mol Ecol 16:1625–1637PubMedCrossRefGoogle Scholar
  30. Goprenko D, Williams RN, DeWoody JA (2007) Reproductive and mating success in the small-mouthed salamander (Ambystoma texanum) estimated via microsatellite parentage analysis. Evol Biol 34:130–139CrossRefGoogle Scholar
  31. Greenwald KR, Gibbs HL, Waite AT (2009) Efficacy of land-cover models in predicting isolation of marbled salamander populations in a fragmented landscape. Conserv Biol 25:1232–1241CrossRefGoogle Scholar
  32. Guillot G, Mortier F, Estoup A (2005) GENELAND: a computer package for landscape genetics. Mol Ecol Notes 5(3):712–715CrossRefGoogle Scholar
  33. Hedrick P (2005) Genetics of populations. Jones and Bartlett, SudburyGoogle Scholar
  34. Hedrick PW, Parker KM, Lee RN (2001) Using microsatellite and MHC variation to identify species ESUs and MUs in the endangered Sonoran topminnow. Mol Ecol 10:1399–1412PubMedCrossRefGoogle Scholar
  35. Hicks NG, Pearson SM (2003) Salamander diversity and abundance in forests with alternative land use histories in the Southern Blue Ridge Mountains. For Ecol Manag 177:117–130CrossRefGoogle Scholar
  36. Jehle R, Arntzen JW (2002) Microsatellite markers in amphibian conservation genetics. Herpetol J 12:1–9Google Scholar
  37. Jehle R, Wilson GA, Arntzen JW, Burke T (2005) Contemporary gene flow and the spatio-temporal genetic structure of subdivided newt populations (Triturus cristatus, T marmoratusi). J Evol Biol 18:619–628PubMedCrossRefGoogle Scholar
  38. Johansson M, Primmer CR, Merila J (2006) History vs current demography: explaining the genetic population structure of the common frog (Rana temporaria). Mol Ecol 15:975–983PubMedCrossRefGoogle Scholar
  39. Johnson JR, Johnson BB, Shaffer B (2010) Genotype and temperature affect locomotor performance in a tiger salamander hybrid swarm. Funct Ecol 24:1073–1080CrossRefGoogle Scholar
  40. Jost L (2008) GST and its relatives do not measure differentiation. Mol Ecol 17:4015–4026PubMedCrossRefGoogle Scholar
  41. Kalinowski S, Wagner AP, Taper ML (2006) ML-RELATE: a computer program for maximum likelihood estimation of relatedness and relationship. Mol Ecol Notes 6:576–579CrossRefGoogle Scholar
  42. Kilpatrick CW (1981) Genetic structure of insular populations. In: Smith MH, Joule J (eds) Mammalian population genetics. University of Georgia Press, Athens, pp 28–59Google Scholar
  43. Kim I, Phillips J, Monjeau J, Birney E, Noack K, Pumo D, Sikes R, Dole J (1998) Habitat islands genetic diversity and gene flow in a Patagonian rodent. Mol Ecol 7:667–678PubMedCrossRefGoogle Scholar
  44. Kinkead KE, Abbott AG, Otis DL (2006) Genetic variation among Ambystoma breeding populations on the Savannah River Site. Conserv Genet 8:281–292CrossRefGoogle Scholar
  45. Kohn MH, York EC, Kanradt DA, Haught G, Sauvajot RM, Wayne RK (1999) Estimating population size by genotyping feces. Proc R Soc Lond B Biol Sci 266:657–663CrossRefGoogle Scholar
  46. Lande R (1988) Demographic models of the Northern Spotted Owl (Strix occidentalis cuurina). Oecologia 75:601–607CrossRefGoogle Scholar
  47. Langella O (2002) Populations 1230 Copyright (C) 1999 Olivier Langella CNRS-UPR9034. Available at http://bioinformaticsorg/;tryphon/populations/
  48. Lemos-Espinal J, Smith GR, Ballinger RE, Ramírez-Bautista A (1999) Status of protected endemic salamanders (Ambystoma: Ambystomatidae: Caudata) in the transvolcanic belt of México. British J Herpetol 68:1–4Google Scholar
  49. Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220PubMedGoogle Scholar
  50. Marsh DM, Page RB, Hanlon TJ, Bareke H, Corritone R, Jetter N, Beckman NG, Gardner K, Selfert DE, Cabe PR (2007) Ecological and genetic evidence that low order stream inhibit dispersal by red-backed salamanders (Plethodon cinereus). Can J Zool 85:319–327CrossRefGoogle Scholar
  51. Masters BS, Forester DC (1995) Kin recognition in a brooding salamander. Proc R Soc Lond B Biol Sci 261:43–48CrossRefGoogle Scholar
  52. Michalakis Y, Excoffier L (1996) A generic estimation of population subdivision using distances between alleles with special reference to microsatellite loci. Genetics 142:1061–1064PubMedGoogle Scholar
  53. Monroy Vilchis O, Zarco-González M, Domínguez-Vega H (2012) Los verdaderos habitantes del monte Tláloc: diversidad e importancia de la fauna. Dirección de difusión y promoción de la investigación y los estudios avanzados. Monte Tláloc II. La casa del dios del agua. Universidad Autónoma del Estado de México, Gobierno del Estado de México, In, pp 111–135Google Scholar
  54. Moritz C (1994) Defining “Evolutionary significant units” for conservation. Trends Ecol Evol 9:373–375PubMedCrossRefGoogle Scholar
  55. Moritz C (1995) Uses of molecular phylogenies for conservation. Philos Trans R Soc Lond 349:113–118CrossRefGoogle Scholar
  56. Myers EM, Zamudio KR (2004) Multiple paternity in an aggregate breeding amphibian: the effect of reproductive skew on estimates of male reproductive success. Mol Ecol 13:1951–1963PubMedCrossRefGoogle Scholar
  57. Naughton GP, Henderson CB, Foresman KR, McGraw RL II (2000) Long-toed salamanders in harvested and intact Douglas-fir forests of western Montana. Ecol Appl 10:1681–1689CrossRefGoogle Scholar
  58. Nei M (1972) Genetic distance between populations. Am Nat 106:283–292CrossRefGoogle Scholar
  59. Nei M (1973) Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci USA 70:3321–3323PubMedCrossRefGoogle Scholar
  60. Newman RA, Squire T (2001) Microsatellite variation and fine-scale population structure in the wood frog (Rana sylvatica). Mol Ecol 10:1087–1100PubMedCrossRefGoogle Scholar
  61. Newman D, Tallmon DA (2001) Experimental evidence for beneficial fitness effects of gene flow in recently isolated populations. Conserv Biol 15:1054–1063CrossRefGoogle Scholar
  62. Noël S, Lapointe FJ (2010) Urban conservation genetics: study of a terrestrial salamander in the city. Biol Conserv 143:2823–2831CrossRefGoogle Scholar
  63. Noël S, Ouellet M, Galois P, Lapointe FJ (2007) Impact of urban fragmentation on the genetic structure of the eastern red-backed salamander. Conserv Genet 8:599–606CrossRefGoogle Scholar
  64. Paetkau D, Calvert W, Stirling I, Strobeck C (1995) Microsatellite analysis of population structure in Canadian polar bears. Mol Ecol 4:347–354PubMedCrossRefGoogle Scholar
  65. Palo JU, O’Hara RB, Laugen AR (2003) Latitudinal divergence on common frog (Rana temporaria) life history traits by natural selection evidence from a comparison of molecular and quantitative genetic data. Mol Ecol 12:1963–1978PubMedCrossRefGoogle Scholar
  66. Palsbøll P, Berube M, Allendorf F (2007) Identification of management units using population genetic data. Trends Ecol Evol 22:11–16PubMedCrossRefGoogle Scholar
  67. Parra-Olea G, Recuero E, Zamudio KR (2007) Primer note: polymorphic microsatellite markers for Mexican salamanders of the genus Ambystoma. Mol Ecol Notes 7:818–820CrossRefGoogle Scholar
  68. Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel Population genetic software for teaching and research. Mol Ecol Notes 6:288–295CrossRefGoogle Scholar
  69. Pfennig DW, Sherman PW, Collins JP (1994) Kin recognition and cannibalism in polyphenic salamanders. Behav Ecol 5:225–232CrossRefGoogle Scholar
  70. Piry S, Luikart G, Cornuet JM (1999) BOTTLENECK: a computer program for detecting recent reductions in the effective population size using allele frequency data. J Hered 90:502–503CrossRefGoogle Scholar
  71. Piry S, Alapetite A, Cornuet JM, Paetkau D, Baudouin L, Estoup A (2004) GeneClass 2: a software for genetic assignment and first-generation migrant detection. J Hered 95:536–539PubMedCrossRefGoogle Scholar
  72. Purrenhage JL, Niewiarowski PH, Moore FBG (2009) Population structure of spotted salamanders (Ambystoma maculatum) in a fragmented landscape. Mol Ecol 18:235–247PubMedCrossRefGoogle Scholar
  73. Queller DC, Goodnigh KF (1989) Estimating relatedness using genetic markers. Evolution 43:258–275CrossRefGoogle Scholar
  74. Raymond M, Rousset F (1995) GENEPOP v 12: population genetics software for exact test and ecumenicism. J Hered 86:248–249Google Scholar
  75. Rhoads EA (2011) Landscape genetics of the small-mouthed salamander (Ambystoma texanum) in a Fragmented Habitat: impacts of landscape change on breeding populations in Hardin county Ohio forests. PhD Thesis. University of DaytonGoogle Scholar
  76. Rowe G, Beebee TJC (2004) Reconciling genetic and demographic estimators of effective population size in the anuran amphibian Bufo calamita. Conserv Genet 5:287–298CrossRefGoogle Scholar
  77. Rowe G, Beebee TJC, Burke T (2000) A microsatellite analysis of natterjack toad Bufo calamita metapopulations. Oikos 88:641–651CrossRefGoogle Scholar
  78. Savage WK, Zamudio KR (2005) Species account: Ambystoma maculatum. In: Lannoo MJ (ed) Amphibian declines: the conservation status of United States species. University of California Press, Berkeley, California, pp 621–627Google Scholar
  79. Savage WK, Fremier AK, Shaffer HB (2010) Landscape genetics of alpine Sierra Nevada salamanders reveals extreme population subdivision in space and time. Mol Ecol 19:3301–3314PubMedCrossRefGoogle Scholar
  80. Searcy CA, Shaffer HB (2008) Calculating biologically accurate mitigation credits: insights from the California tiger salamander. Conserv Biol 22:997–1005PubMedCrossRefGoogle Scholar
  81. SEMARNAT (2010) Norma Oficial Mexicana NOM-059- SEMARNAT-2010, Protección ambiental-Especies nativas de México de flora y fauna silvestres-Categorías de riesgo y especificaciones para su inclusión, exclusión o cambio-Lista de especies en riesgo. Diario Oficial de la Federación, 10 diciembre 2010, MéxicoGoogle Scholar
  82. Semlitsch RD (2008) Differentiating migration and dispersal processes for pond-breeding amphibians. J Wildl Manag 72:260–267CrossRefGoogle Scholar
  83. Shaffer B, Parra-Olea G, Wake D (2004) Ambystoma leorae. In: IUCN 2012. IUCN Red List of Threatened Species. Version 2012.2. Accessed on 25 Apr 2013
  84. Slatkin M (1995) A measure of population subdivision based on microsatellite allele frequencies. Genetics 139:457–462PubMedGoogle Scholar
  85. Spear S, Storfer A (2010) Anthropogenic and natural disturbance lead to differing patterns of gene flow in the Rocky Mountain tailed frog, Ascaphus montanus. Biol Conserv 143:778–786CrossRefGoogle Scholar
  86. Spear S, Peterson FCR, Matocq MD, Storfer A (2005) Landscape genetics of the blotched tiger salamander (Ambystoma tigrinum melanostictum). Mol Ecol 14:2553–2564PubMedCrossRefGoogle Scholar
  87. Steinfartz S, Stemshorn K, Kuesters D, Tautz D (2006) Patterns of multiple paternity within and between annual reproduction cycles of the fire salamander (Salamandra salamandra) under natural conditions. J Zool 268:1–8CrossRefGoogle Scholar
  88. Summitt SD (2009) Determination of dispersal patterns of the small-mouthed salamander (Ambystoma texanum) in Eagle Creek Park (Indianapolis, IN). BSc Thesis. Butler UniversityGoogle Scholar
  89. Taylor EH (1943) Herpetological novelties from Mexico. Univ Kanas Sci Bull 29:343–361Google Scholar
  90. Templeton A, Read B (1994) Inbreeding: One word several meanings much confusion. In: Loeschcke, Tomiuk VJ, Jain SK (eds) Conservation Genetics. Birkhäuser, Basal, pp 91–105Google Scholar
  91. Tennessen JA, Zamudio KR (2003) Early-male reproductive advantage multiple paternity and sperm storage in an amphibian aggregate breeder. Mol Ecol 12:1567–1576PubMedCrossRefGoogle Scholar
  92. Trenham PC, Shaffer HB (2005) Amphibian upland habitat use and its consequences for population viability. Ecol Appl 15:1158–1168CrossRefGoogle Scholar
  93. Valière N (2002) GIMLET: a computer program for analyzing genetic individual identification data. Mol Ecol Notes 10:1046–1048Google Scholar
  94. Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538CrossRefGoogle Scholar
  95. Van Treuren R, Bijlsma R, Van Delden W, Ouborg N (1991) The significance of genetic erosion in the process of extinction. I. Genetic differentiation in Salvia pratensis and Scabiosa columbaria in relation to population size. Heredity 66:181–189CrossRefGoogle Scholar
  96. Vázquez-Domínguez E, Surárez-Atilano M, Booth W, González-Baca C, Cuarón AD (2012) Genetic evidence of a recent successful colonization of introduced species on islands: Boa constrictor imperator on Cozumel Island. Biol Invasions 14:2101–2116CrossRefGoogle Scholar
  97. Vences M, Wake DB (2007) Speciation species boundaries and phylogeography of amphibians. In: Heatwole H, Tyler M (eds) Amphibian biology. Surrey Beatty and Sons, Chipping Norton, pp 2613–2669Google Scholar
  98. Waldman B (1988) The ecology of s kin recognition. Annu Rev Ecol Syst 19:543–571CrossRefGoogle Scholar
  99. Walls SC, Roudebush RE (1991) Reduced aggression toward siblings as evidence of kin recognition in cannibalistic salamanders. Am Nat 138:1027–1038CrossRefGoogle Scholar
  100. Wang IJ (2009) Fine-scale population structure in a desert amphibian: landscape genetics of the black toad (Bufo exsul). Mol Ecol 18:3847–3856PubMedCrossRefGoogle Scholar
  101. Wang IJ, Summers K (2010) Genetic structure is correlated with phenotypic divergence rather than geographic isolation in the highly polymorphic strawberry poison-dart frog. Mol Ecol 19:447–458PubMedCrossRefGoogle Scholar
  102. Wang IJ, Savage WK, Shaffer HB (2009) Landscape genetics and least-cost path analysis reveal unexpected dispersal routes in the California tiger salamander (Ambystoma californiense). Mol Ecol 18:1365–1374PubMedCrossRefGoogle Scholar
  103. Waples RS (2006) A bias correction for estimates of effective population size based on linkage disequilibrium at unlinked gene loci. Conserv Genet 7:167–184CrossRefGoogle Scholar
  104. Waples RS, Do C (2008) LDNE: a program for estimating effective population size from data on linkage disequilibrium. Mol Ecol Resour 8:753–756PubMedCrossRefGoogle Scholar
  105. Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370CrossRefGoogle Scholar
  106. Yeh FC, Yang RC, Boyle T, Ye ZH, Mao J (1997) POPGENE, the user-friendly shareware for population genetic analysis. Molecular Biology and Biotechnology Center, University of Alberta, EdmontonGoogle Scholar
  107. Zamudio KR, Wieczorek AM (2007) Fine-scale spatial genetic structure and dispersal among spotted salamander (Ambystoma maculatum) breeding populations. Mol Ecol 16:257–274PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Armando Sunny
    • 1
  • Octavio Monroy-Vilchis
    • 1
    Email author
  • Victor Fajardo
    • 1
  • Ulises Aguilera-Reyes
    • 1
  1. 1.Estación Biológica Sierra Nanchititla, Facultad de CienciasUniversidad Autónoma del Estado de MéxicoTolucaMexico

Personalised recommendations